結果

問題 No.5007 Steiner Space Travel
ユーザー brthyyjpbrthyyjp
提出日時 2023-04-25 18:26:04
言語 PyPy3
(7.3.15)
結果
TLE  
実行時間 -
コード長 4,560 bytes
コンパイル時間 464 ms
コンパイル使用メモリ 87,164 KB
実行使用メモリ 79,604 KB
スコア 7,752,845
最終ジャッジ日時 2023-04-25 18:26:40
合計ジャッジ時間 33,808 ms
ジャッジサーバーID
(参考情報)
judge14 / judge11
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 994 ms
79,436 KB
testcase_01 AC 993 ms
79,276 KB
testcase_02 TLE -
testcase_03 AC 994 ms
79,180 KB
testcase_04 AC 994 ms
79,432 KB
testcase_05 AC 995 ms
79,300 KB
testcase_06 AC 994 ms
79,080 KB
testcase_07 AC 994 ms
79,112 KB
testcase_08 AC 997 ms
79,440 KB
testcase_09 AC 995 ms
79,472 KB
testcase_10 AC 996 ms
79,432 KB
testcase_11 AC 994 ms
79,440 KB
testcase_12 AC 995 ms
79,352 KB
testcase_13 AC 994 ms
79,320 KB
testcase_14 AC 995 ms
79,172 KB
testcase_15 AC 994 ms
79,432 KB
testcase_16 AC 994 ms
79,344 KB
testcase_17 AC 994 ms
79,416 KB
testcase_18 AC 995 ms
79,312 KB
testcase_19 AC 994 ms
79,304 KB
testcase_20 AC 999 ms
79,352 KB
testcase_21 AC 995 ms
79,200 KB
testcase_22 AC 995 ms
79,436 KB
testcase_23 AC 993 ms
79,176 KB
testcase_24 AC 994 ms
79,260 KB
testcase_25 AC 995 ms
79,096 KB
testcase_26 AC 995 ms
79,604 KB
testcase_27 AC 996 ms
79,568 KB
testcase_28 AC 994 ms
79,268 KB
testcase_29 AC 994 ms
79,516 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import math
import random
import os
import io
import sys
from time import time
start_time = time()

input = sys.stdin.readline


random.seed(42)
alpha = 5
mx = 1000
INF = float('inf')
Ts = 50
Te = 10
TIME_LIMIT = 0.9
TIME_LIMIT_INS = 0.9

max_iter = 50

limit = 700

n, m = map(int, input().split())
XY = []
for i in range(n):
    x, y = map(int, input().split())
    XY.append((x, y))


def kMeans(XY, k):
    n = len(XY)
    clusters = [random.randint(0, k-1) for i in range(n)]
    for _ in range(max_iter):
        centroidX = [0]*k
        centroidY = [0]*k
        clusterCnt = [0]*k
        for i, c in enumerate(clusters):
            clusterCnt[c] += 1
            centroidX[c] += XY[i][0]
            centroidY[c] += XY[i][1]
        for c in range(k):
            if clusterCnt[c] == 0:
                centroidX[c] = random.randint(0, mx)
                centroidY[c] = random.randint(0, mx)
            else:
                centroidX[c] //= clusterCnt[c]
                centroidY[c] //= clusterCnt[c]
        newClusters = [-1]*n
        for i in range(n):
            mn = INF
            nc = -1
            x, y = XY[i]
            for c in range(k):
                d = (x-centroidX[c])**2+(y-centroidY[c])**2
                if d < mn:
                    mn = d
                    nc = c
            newClusters[i] = nc
        clusters = newClusters
    return centroidX, centroidY


CD = []
centroidX, centroidY = kMeans(XY, m)
for c, d in zip(centroidX, centroidY):
    CD.append((c, d))

XY += CD


def calc_energy(i, j):
    xi, yi = XY[i]
    xj, yj = XY[j]
    d2 = (xi-xj)**2+(yi-yj)**2
    if 0 <= i < n and 0 <= j < n:
        return (alpha**2)*d2
    elif n <= i < n+m and n <= j < n+m:
        return d2
    else:
        return alpha*d2


g = [[] for i in range(n+m)]
dist_table = [[INF]*(n+m) for i in range(n+m)]
for i in range(n+m):
    for j in range(n+m):
        if i == j:
            continue
        x1, y1 = XY[j]
        dist = calc_energy(i, j)
        g[i].append((dist, j))
        dist_table[i][j] = dist


def calc_dist(path, dist_table):
    res = 0
    for v, nv in zip(path, path[1:]):
        res += dist_table[v][nv]
    return res


def nearest_neighbor(s, g):
    n = len(g)
    nonvisit = set(range(n))
    path = []
    path.append(s)
    nonvisit.remove(s)
    while nonvisit:
        min_dist = INF
        nx = -1
        for d, v in g[path[-1]]:
            if not v in nonvisit:
                continue
            if d < min_dist:
                min_dist = d
                nx = v
        path.append(nx)
        nonvisit.remove(nx)
    return path+[s]


def insert_station(path, dist_table, time_limit):
    while True:
        now_time = time()
        if now_time - start_time > time_limit:
            return path
        i = random.randint(0, len(path)-2)
        u, v = path[i], path[i+1]
        min_dist = dist_table[u][v]
        nx = -1
        for k in range(m):
            w = n+k
            temp = dist_table[u][w]+dist_table[w][v]
            if temp <= min_dist:
                min_dist = temp
                nx = w
        if nx != -1:
            path = path[0:i+1]+[nx]+path[i+1:]
    return path

def two_opt_with_annealing(path, dist_table, Ts, Te, time_limit):
    n = len(path)
    while True:
        now_time = time()
        if now_time - start_time > time_limit:
            return path
        for i in range(n-3):
            p1 = path[i]
            p2 = path[i+1]
            p_dist = dist_table[p1][p2]
            for j in range(i+2, n-1):
                q1 = path[j]
                q2 = path[j+1]
                q_dist = dist_table[q1][q2]
                cur_dist = p_dist + q_dist
                new_dist = dist_table[p1][q1]+dist_table[p2][q2]
                diff = new_dist-cur_dist
                temp = Ts+(Te-Ts)*(time()-start_time)/time_limit
                prob = math.exp(min(limit, -diff / temp))
                if prob > random.random():
                    sep1, sep2, sep3 = path[:i+1], path[i+1:j+1], path[j+1:]
                    sep2.reverse()
                    path = sep1+sep2+sep3


path = nearest_neighbor(0, g)
path = insert_station(path, dist_table, TIME_LIMIT_INS)
#path = two_opt_with_annealing(path, dist_table, Ts, Te, TIME_LIMIT)

s = calc_dist(path, dist_table)
score = round(10**9/(1000+math.sqrt(s)))
print(score, file=sys.stderr, flush=True)

for c, d in CD:
    print(c, d)

print(len(path))
for k in range(len(path)):
    r = path[k]
    if 0 <= r < n:
        print(1, r+1)
    else:
        print(2, r-n+1)
0