結果
| 問題 |
No.2286 Join Hands
|
| コンテスト | |
| ユーザー |
torisasami4
|
| 提出日時 | 2023-04-28 22:54:44 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 8,173 bytes |
| コンパイル時間 | 3,161 ms |
| コンパイル使用メモリ | 238,216 KB |
| 最終ジャッジ日時 | 2025-02-12 15:31:35 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | RE * 3 |
| other | AC * 8 WA * 20 RE * 30 |
ソースコード
#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < int(n); i++)
#define per(i, n) for (int i = (n)-1; 0 <= i; i--)
#define rep2(i, l, r) for (int i = (l); i < int(r); i++)
#define per2(i, l, r) for (int i = (r)-1; int(l) <= i; i--)
#define each(e, v) for (auto& e : v)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
template <typename T> void print(const vector<T>& v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
if (v.empty()) cout << '\n';
}
using ll = long long;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
template <typename T> bool chmax(T& x, const T& y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T> bool chmin(T& x, const T& y) {
return (x > y) ? (x = y, true) : false;
}
template <class T>
using minheap = std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <class T> using maxheap = std::priority_queue<T>;
template <typename T> int lb(const vector<T>& v, T x) {
return lower_bound(begin(v), end(v), x) - begin(v);
}
template <typename T> int ub(const vector<T>& v, T x) {
return upper_bound(begin(v), end(v), x) - begin(v);
}
template <typename T> void rearrange(vector<T>& v) {
sort(begin(v), end(v));
v.erase(unique(begin(v), end(v)), end(v));
}
// __int128_t gcd(__int128_t a, __int128_t b) {
// if (a == 0)
// return b;
// if (b == 0)
// return a;
// __int128_t cnt = a % b;
// while (cnt != 0) {
// a = b;
// b = cnt;
// cnt = a % b;
// }
// return b;
// }
long long extGCD(long long a, long long b, long long& x, long long& y) {
if (b == 0) {
x = 1;
y = 0;
return a;
}
long long d = extGCD(b, a % b, y, x);
y -= a / b * x;
return d;
}
struct UnionFind {
vector<int> data;
int num;
UnionFind(int sz) {
data.assign(sz, -1);
num = sz;
}
bool unite(int x, int y) {
x = find(x), y = find(y);
if (x == y) return (false);
if (data[x] > data[y]) swap(x, y);
data[x] += data[y];
data[y] = x;
num--;
return (true);
}
int find(int k) {
if (data[k] < 0) return (k);
return (data[k] = find(data[k]));
}
int size(int k) { return (-data[find(k)]); }
bool same(int x, int y) { return find(x) == find(y); }
int operator[](int k) { return find(k); }
};
template <int mod> struct Mod_Int {
int x;
Mod_Int() : x(0) {}
Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
static int get_mod() { return mod; }
Mod_Int& operator+=(const Mod_Int& p) {
if ((x += p.x) >= mod) x -= mod;
return *this;
}
Mod_Int& operator-=(const Mod_Int& p) {
if ((x += mod - p.x) >= mod) x -= mod;
return *this;
}
Mod_Int& operator*=(const Mod_Int& p) {
x = (int)(1LL * x * p.x % mod);
return *this;
}
Mod_Int& operator/=(const Mod_Int& p) {
*this *= p.inverse();
return *this;
}
Mod_Int& operator++() { return *this += Mod_Int(1); }
Mod_Int operator++(int) {
Mod_Int tmp = *this;
++*this;
return tmp;
}
Mod_Int& operator--() { return *this -= Mod_Int(1); }
Mod_Int operator--(int) {
Mod_Int tmp = *this;
--*this;
return tmp;
}
Mod_Int operator-() const { return Mod_Int(-x); }
Mod_Int operator+(const Mod_Int& p) const { return Mod_Int(*this) += p; }
Mod_Int operator-(const Mod_Int& p) const { return Mod_Int(*this) -= p; }
Mod_Int operator*(const Mod_Int& p) const { return Mod_Int(*this) *= p; }
Mod_Int operator/(const Mod_Int& p) const { return Mod_Int(*this) /= p; }
bool operator==(const Mod_Int& p) const { return x == p.x; }
bool operator!=(const Mod_Int& p) const { return x != p.x; }
Mod_Int inverse() const {
assert(*this != Mod_Int(0));
return pow(mod - 2);
}
Mod_Int pow(long long k) const {
Mod_Int now = *this, ret = 1;
for (; k > 0; k >>= 1, now *= now) {
if (k & 1) ret *= now;
}
return ret;
}
friend ostream& operator<<(ostream& os, const Mod_Int& p) {
return os << p.x;
}
friend istream& operator>>(istream& is, Mod_Int& p) {
long long a;
is >> a;
p = Mod_Int<mod>(a);
return is;
}
};
ll mpow2(ll x, ll n, ll mod) {
ll ans = 1;
x %= mod;
while (n != 0) {
if (n & 1) ans = ans * x % mod;
x = x * x % mod;
n = n >> 1;
}
ans %= mod;
return ans;
}
template <typename T> T modinv(T a, const T& m) {
T b = m, u = 1, v = 0;
while (b > 0) {
T t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return u >= 0 ? u % m : (m - (-u) % m) % m;
}
ll divide_int(ll a, ll b) {
if (b < 0) a = -a, b = -b;
return (a >= 0 ? a / b : (a - b + 1) / b);
}
// const int MOD = 1000000007;
const int MOD = 998244353;
using mint = Mod_Int<MOD>;
mint mpow(mint x, ll n) {
bool rev = n < 0;
n = abs(n);
mint ans = 1;
while (n != 0) {
if (n & 1) ans *= x;
x *= x;
n = n >> 1;
}
return (rev ? ans.inverse() : ans);
}
// ----- library -------
template <typename F> // 流量の型
struct Dinic {
struct edge {
int to;
F cap;
int rev;
edge(int to, F cap, int rev) : to(to), cap(cap), rev(rev) {}
};
vector<vector<edge>> es;
vector<int> d, pos;
const F zero_F, INF_F;
const int n;
Dinic(int n, F zero_F = 0, F INF_F = numeric_limits<F>::max() / 2) : es(n), d(n), pos(n), zero_F(zero_F), INF_F(INF_F), n(n) {}
void add_edge(int from, int to, F cap, bool directed = true) {
es[from].emplace_back(to, cap, (int)es[to].size());
es[to].emplace_back(from, directed ? zero_F : cap, (int)es[from].size() - 1);
}
bool _bfs(int s, int t) {
fill(begin(d), end(d), -1);
queue<int> que;
d[s] = 0;
que.push(s);
while (!que.empty()) {
int i = que.front();
que.pop();
for (auto &e : es[i]) {
if (e.cap > zero_F && d[e.to] == -1) {
d[e.to] = d[i] + 1;
que.push(e.to);
}
}
}
return d[t] != -1;
}
F _dfs(int now, int t, F flow) {
if (now == t) return flow;
for (int &i = pos[now]; i < (int)es[now].size(); i++) {
edge &e = es[now][i];
if (e.cap > zero_F && d[e.to] > d[now]) {
F f = _dfs(e.to, t, min(flow, e.cap));
if (f > zero_F) {
e.cap -= f;
es[e.to][e.rev].cap += f;
return f;
}
}
}
return zero_F;
}
F max_flow(int s, int t) { // 操作後の d 配列は最小カットの 1 つを表す(0 以上なら s 側、-1 なら t 側)
F flow = zero_F;
while (_bfs(s, t)) {
fill(begin(pos), end(pos), 0);
F f = zero_F;
while ((f = _dfs(s, t, INF_F)) > zero_F) flow += f;
}
return flow;
}
};
// ----- library -------
int main() {
ios::sync_with_stdio(false);
std::cin.tie(nullptr);
cout << fixed << setprecision(15);
int n, m;
cin >> n >> m;
Dinic<int> mf(n * 4 + 2);
int u, v;
vector<int> d(n, 0);
rep(i, m) {
cin >> u >> v, u--, v--;
d[u]++, d[v]++;
rep(s, 2) rep(t, 2) mf.add_edge(u * 2 + s, v * 2 + n * 2 + t, 1);
}
rep(i, n * 2) mf.add_edge(n * 4, i, 1), mf.add_edge(i + n * 2, n * 4 + 1, 1);
int c0 = 0;
rep(i, n) if (d[i] == 0) c0++;
int ans = mf.max_flow(n * 4, n * 4 + 1) * 2 - n;
if (c0)
exit(1)/*chmin(ans, n - 4)*/;
cout << ans << endl;
}
torisasami4