結果
| 問題 |
No.2286 Join Hands
|
| コンテスト | |
| ユーザー |
maspy
|
| 提出日時 | 2023-04-28 23:30:07 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 1,322 ms / 2,000 ms |
| コード長 | 21,302 bytes |
| コンパイル時間 | 5,153 ms |
| コンパイル使用メモリ | 303,552 KB |
| 実行使用メモリ | 8,288 KB |
| 最終ジャッジ日時 | 2024-11-17 22:22:19 |
| 合計ジャッジ時間 | 10,939 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 58 |
ソースコード
#line 1 "/home/maspy/compro/library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) \
for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T, typename U>
T ceil(T x, U y) {
return (x > 0 ? (x + y - 1) / y : x / y);
}
template <typename T, typename U>
T floor(T x, U y) {
return (x > 0 ? x / y : (x - y + 1) / y);
}
template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sum = 0;
for (auto &&a: A) sum += a;
return sum;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
assert(!que.empty());
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
assert(!que.empty());
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids),
[&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
#endif
#line 1 "/home/maspy/compro/library/other/io.hpp"
// based on yosupo's fastio
#include <unistd.h>
namespace fastio {
#define FASTIO
// クラスが read(), print() を持っているかを判定するメタ関数
struct has_write_impl {
template <class T>
static auto check(T &&x) -> decltype(x.write(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_write : public decltype(has_write_impl::check<T>(std::declval<T>())) {
};
struct has_read_impl {
template <class T>
static auto check(T &&x) -> decltype(x.read(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_read : public decltype(has_read_impl::check<T>(std::declval<T>())) {};
struct Scanner {
FILE *fp;
char line[(1 << 15) + 1];
size_t st = 0, ed = 0;
void reread() {
memmove(line, line + st, ed - st);
ed -= st;
st = 0;
ed += fread(line + ed, 1, (1 << 15) - ed, fp);
line[ed] = '\0';
}
bool succ() {
while (true) {
if (st == ed) {
reread();
if (st == ed) return false;
}
while (st != ed && isspace(line[st])) st++;
if (st != ed) break;
}
if (ed - st <= 50) {
bool sep = false;
for (size_t i = st; i < ed; i++) {
if (isspace(line[i])) {
sep = true;
break;
}
}
if (!sep) reread();
}
return true;
}
template <class T, enable_if_t<is_same<T, string>::value, int> = 0>
bool read_single(T &ref) {
if (!succ()) return false;
while (true) {
size_t sz = 0;
while (st + sz < ed && !isspace(line[st + sz])) sz++;
ref.append(line + st, sz);
st += sz;
if (!sz || st != ed) break;
reread();
}
return true;
}
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
bool read_single(T &ref) {
if (!succ()) return false;
bool neg = false;
if (line[st] == '-') {
neg = true;
st++;
}
ref = T(0);
while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); }
if (neg) ref = -ref;
return true;
}
template <typename T,
typename enable_if<has_read<T>::value>::type * = nullptr>
inline bool read_single(T &x) {
x.read();
return true;
}
bool read_single(double &ref) {
string s;
if (!read_single(s)) return false;
ref = std::stod(s);
return true;
}
bool read_single(char &ref) {
string s;
if (!read_single(s) || s.size() != 1) return false;
ref = s[0];
return true;
}
template <class T>
bool read_single(vector<T> &ref) {
for (auto &d: ref) {
if (!read_single(d)) return false;
}
return true;
}
template <class T, class U>
bool read_single(pair<T, U> &p) {
return (read_single(p.first) && read_single(p.second));
}
template <size_t N = 0, typename T>
void read_single_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
read_single(x);
read_single_tuple<N + 1>(t);
}
}
template <class... T>
bool read_single(tuple<T...> &tpl) {
read_single_tuple(tpl);
return true;
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
bool f = read_single(h);
assert(f);
read(t...);
}
Scanner(FILE *fp) : fp(fp) {}
};
struct Printer {
Printer(FILE *_fp) : fp(_fp) {}
~Printer() { flush(); }
static constexpr size_t SIZE = 1 << 15;
FILE *fp;
char line[SIZE], small[50];
size_t pos = 0;
void flush() {
fwrite(line, 1, pos, fp);
pos = 0;
}
void write(const char val) {
if (pos == SIZE) flush();
line[pos++] = val;
}
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
void write(T val) {
if (pos > (1 << 15) - 50) flush();
if (val == 0) {
write('0');
return;
}
if (val < 0) {
write('-');
val = -val; // todo min
}
size_t len = 0;
while (val) {
small[len++] = char(0x30 | (val % 10));
val /= 10;
}
for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; }
pos += len;
}
void write(const string s) {
for (char c: s) write(c);
}
void write(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) write(s[i]);
}
void write(const double x) {
ostringstream oss;
oss << fixed << setprecision(15) << x;
string s = oss.str();
write(s);
}
void write(const long double x) {
ostringstream oss;
oss << fixed << setprecision(15) << x;
string s = oss.str();
write(s);
}
template <typename T,
typename enable_if<has_write<T>::value>::type * = nullptr>
inline void write(T x) {
x.write();
}
template <class T>
void write(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) write(' ');
write(val[i]);
}
}
template <class T, class U>
void write(const pair<T, U> val) {
write(val.first);
write(' ');
write(val.second);
}
template <size_t N = 0, typename T>
void write_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { write(' '); }
const auto x = std::get<N>(t);
write(x);
write_tuple<N + 1>(t);
}
}
template <class... T>
bool write(tuple<T...> tpl) {
write_tuple(tpl);
return true;
}
template <class T, size_t S>
void write(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) write(' ');
write(val[i]);
}
}
void write(i128 val) {
string s;
bool negative = 0;
if (val < 0) {
negative = 1;
val = -val;
}
while (val) {
s += '0' + int(val % 10);
val /= 10;
}
if (negative) s += "-";
reverse(all(s));
if (len(s) == 0) s = "0";
write(s);
}
};
Scanner scanner = Scanner(stdin);
Printer printer = Printer(stdout);
void flush() { printer.flush(); }
void print() { printer.write('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
printer.write(head);
if (sizeof...(Tail)) printer.write(' ');
print(forward<Tail>(tail)...);
}
void read() {}
template <class Head, class... Tail>
void read(Head &head, Tail &... tail) {
scanner.read(head);
read(tail...);
}
} // namespace fastio
using fastio::print;
using fastio::flush;
using fastio::read;
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 2 "/home/maspy/compro/library/flow/bflow.hpp"
template <class Flow = ll, class Cost = ll, bool MINIMIZE = 1>
struct MinCostFlow {
private:
static constexpr int objective = (MINIMIZE ? 1 : -1);
static constexpr int SCALING_FACTOR = 2;
using V_id = uint32_t;
using E_id = uint32_t;
struct Edge {
friend struct MinCostFlow;
private:
V_id frm, to;
Flow flow, cap;
Cost cost;
E_id rev;
public:
Edge() = default;
Edge(const V_id frm, const V_id to, const Flow cap, const Cost cost,
const E_id rev)
: frm(frm), to(to), flow(0), cap(cap), cost(cost), rev(rev) {}
[[nodiscard]] Flow residual_cap() const { return cap - flow; }
};
public:
struct EdgePtr {
friend struct MinCostFlow;
private:
const MinCostFlow *instance;
const V_id v;
const E_id e;
EdgePtr(const MinCostFlow *instance, const V_id v, const E_id e)
: instance(instance), v(v), e(e) {}
[[nodiscard]] const Edge &edge() const { return instance->g[v][e]; }
[[nodiscard]] const Edge &rev() const {
const Edge &e = edge();
return instance->g[e.to][e.rev];
}
public:
[[nodiscard]] V_id frm() const { return rev().to; }
[[nodiscard]] V_id to() const { return edge().to; }
[[nodiscard]] Flow flow() const { return edge().flow; }
[[nodiscard]] Flow lower() const { return -rev().cap; }
[[nodiscard]] Flow upper() const { return edge().cap; }
[[nodiscard]] Cost cost() const { return edge().cost; }
[[nodiscard]] Cost gain() const { return -edge().cost; }
};
private:
V_id n;
std::vector<std::vector<Edge>> g;
std::vector<Flow> b;
public:
MinCostFlow(int n) : n(n) {
g.resize(n);
b.resize(n);
}
V_id add_vertex() {
++n;
g.resize(n);
b.resize(n);
return n - 1;
}
std::vector<V_id> add_vertices(const size_t size) {
std::vector<V_id> ret;
for (V_id i = 0; i < size; ++i) ret.emplace_back(n + i);
n += size;
g.resize(n);
b.resize(n);
return ret;
}
void add(const V_id frm, const V_id to, const Flow lo, const Flow hi,
const Cost cost) {
const E_id e = g[frm].size(), re = frm == to ? e + 1 : g[to].size();
assert(lo <= hi);
g[frm].emplace_back(Edge{frm, to, hi, cost * objective, re});
g[to].emplace_back(Edge{to, frm, -lo, -cost * objective, e});
edges.eb(EdgePtr{this, frm, e});
}
void add_source(const V_id v, const Flow amount) { b[v] += amount; }
void add_sink(const V_id v, const Flow amount) { b[v] -= amount; }
private:
static Cost constexpr unreachable = std::numeric_limits<Cost>::max();
Cost farthest;
std::vector<Cost> potential;
std::vector<Cost> dist;
std::vector<Edge *> parent;
std::priority_queue<std::pair<Cost, int>, std::vector<std::pair<Cost, int>>,
std::greater<>>
pq;
std::vector<V_id> excess_vs, deficit_vs;
std::vector<EdgePtr> edges;
Edge &rev(const Edge &e) { return g[e.to][e.rev]; }
void push(Edge &e, const Flow amount) {
e.flow += amount;
g[e.to][e.rev].flow -= amount;
}
Cost residual_cost(const V_id frm, const V_id to, const Edge &e) {
return e.cost + potential[frm] - potential[to];
}
bool dual(const Flow delta) {
dist.assign(n, unreachable);
parent.assign(n, nullptr);
excess_vs.erase(std::remove_if(std::begin(excess_vs), std::end(excess_vs),
[&](const V_id v) { return b[v] < delta; }),
std::end(excess_vs));
deficit_vs.erase(
std::remove_if(std::begin(deficit_vs), std::end(deficit_vs),
[&](const V_id v) { return b[v] > -delta; }),
std::end(deficit_vs));
for (const auto v: excess_vs) pq.emplace(dist[v] = 0, v);
farthest = 0;
std::size_t deficit_count = 0;
while (!pq.empty()) {
const auto [d, u] = pq.top();
pq.pop();
if (dist[u] < d) continue;
farthest = d;
if (b[u] <= -delta) ++deficit_count;
if (deficit_count >= deficit_vs.size()) break;
for (auto &e: g[u]) {
if (e.residual_cap() < delta) continue;
const auto v = e.to;
const auto new_dist = d + residual_cost(u, v, e);
if (new_dist >= dist[v]) continue;
pq.emplace(dist[v] = new_dist, v);
parent[v] = &e;
}
}
pq = decltype(pq)();
for (V_id v = 0; v < n; ++v) {
potential[v] += std::min(dist[v], farthest);
}
return deficit_count > 0;
}
void primal(const Flow delta) {
for (const auto t: deficit_vs) {
if (dist[t] > farthest) continue;
Flow f = -b[t];
V_id v;
for (v = t; parent[v] != nullptr && f >= delta; v = parent[v]->frm) {
f = std::min(f, parent[v]->residual_cap());
}
f = std::min(f, b[v]);
if (f < delta) continue;
for (v = t; parent[v] != nullptr;) {
auto &e = *parent[v];
push(e, f);
const size_t u = parent[v]->frm;
parent[v] = nullptr;
v = u;
}
b[t] += f;
b[v] -= f;
}
}
void saturate_negative(const Flow delta) {
excess_vs.clear();
deficit_vs.clear();
for (auto &es: g)
for (auto &e: es) {
const Flow rcap = e.residual_cap();
const Cost rcost = residual_cost(e.frm, e.to, e);
if (rcost < 0 && rcap >= delta) {
push(e, rcap);
b[e.frm] -= rcap;
b[e.to] += rcap;
}
}
for (V_id v = 0; v < n; ++v)
if (b[v] != 0) { (b[v] > 0 ? excess_vs : deficit_vs).emplace_back(v); }
}
public:
std::pair<bool, i128> solve() {
potential.resize(n);
for (auto &es: g)
for (auto &e: es) {
const Flow rcap = e.residual_cap();
if (rcap < 0) {
push(e, rcap);
b[e.frm] -= rcap;
b[e.to] += rcap;
}
}
Flow inf_flow = 1;
for (const auto &es: g)
for (const auto &e: es) inf_flow = std::max(inf_flow, e.residual_cap());
Flow delta = 1;
while (delta <= inf_flow) delta *= SCALING_FACTOR;
for (delta /= SCALING_FACTOR; delta; delta /= SCALING_FACTOR) {
saturate_negative(delta);
while (dual(delta)) primal(delta);
}
i128 value = 0;
for (const auto &es: g)
for (const auto &e: es) { value += e.flow * e.cost; }
value /= 2;
if (excess_vs.empty() && deficit_vs.empty()) {
return {true, value / objective};
} else {
return {false, value / objective};
}
}
template <class T>
T get_result_value() {
T value = 0;
for (const auto &es: g)
for (const auto &e: es) { value += (T)(e.flow) * (T)(e.cost); }
value /= (T)2;
return value / objective;
}
std::vector<Cost> get_potential() {
std::fill(potential.begin(), potential.end(), 0);
for (int i = 0; i < (int)n; i++)
for (const auto &es: g)
for (const auto &e: es)
if (e.residual_cap() > 0)
potential[e.to]
= std::min(potential[e.to], potential[e.frm] + e.cost);
return potential;
}
std::vector<EdgePtr> get_edges() { return edges; }
};
#line 4 "main.cpp"
void solve() {
LL(N, M);
auto in = [&](int v) -> int { return v; };
auto out = [&](int v) -> int { return N + v; };
auto leq = [&](int v) -> int { return N + N + v; };
auto geq = [&](int v) -> int { return N + N + N + v; };
MinCostFlow<int, int, true> G(4 * N);
FOR(v, N) { G.add(in(v), out(v), 1, 1, 0); }
FOR(v, N) {
if (v > 0) G.add(out(v), leq(v - 1), 0, 1, 0);
if (v + 1 < N) G.add(out(v), geq(v + 1), 0, 1, 0);
}
FOR(v, N - 1) G.add(leq(v + 1), leq(v), 0, N, 0);
FOR(v, N - 1) G.add(geq(v), geq(v + 1), 0, N, 0);
FOR(v, N) G.add(leq(v), in(v), 0, 1, 0);
FOR(v, N) G.add(geq(v), in(v), 0, 1, 0);
FOR(M) {
LL(a, b);
--a, --b;
G.add(out(a), in(b), 0, 1, -1);
G.add(out(b), in(a), 0, 1, -1);
}
auto [ok, cost] = G.solve();
ll x = -cost;
ll y = N - x;
print(x - y);
}
signed main() {
int T = 1;
// INT(T);
FOR(T) solve();
return 0;
}
maspy