結果

問題 No.2286 Join Hands
ユーザー 👑 emthrmemthrm
提出日時 2023-04-29 01:12:11
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
MLE  
実行時間 -
コード長 6,286 bytes
コンパイル時間 3,602 ms
コンパイル使用メモリ 263,948 KB
実行使用メモリ 1,348,608 KB
最終ジャッジ日時 2024-11-17 23:49:25
合計ジャッジ時間 88,288 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
10,496 KB
testcase_01 AC 2 ms
89,984 KB
testcase_02 AC 2 ms
12,068 KB
testcase_03 AC 2 ms
10,624 KB
testcase_04 AC 2 ms
12,068 KB
testcase_05 AC 2 ms
10,624 KB
testcase_06 AC 2 ms
12,196 KB
testcase_07 MLE -
testcase_08 MLE -
testcase_09 MLE -
testcase_10 TLE -
testcase_11 TLE -
testcase_12 TLE -
testcase_13 MLE -
testcase_14 MLE -
testcase_15 MLE -
testcase_16 MLE -
testcase_17 TLE -
testcase_18 MLE -
testcase_19 TLE -
testcase_20 TLE -
testcase_21 TLE -
testcase_22 TLE -
testcase_23 TLE -
testcase_24 TLE -
testcase_25 TLE -
testcase_26 TLE -
testcase_27 TLE -
testcase_28 AC 5 ms
6,692 KB
testcase_29 AC 3 ms
6,688 KB
testcase_30 AC 3 ms
6,688 KB
testcase_31 AC 3 ms
6,692 KB
testcase_32 AC 3 ms
6,688 KB
testcase_33 AC 3 ms
6,692 KB
testcase_34 AC 3 ms
6,692 KB
testcase_35 AC 3 ms
6,692 KB
testcase_36 AC 3 ms
6,692 KB
testcase_37 AC 3 ms
6,692 KB
testcase_38 AC 4 ms
6,692 KB
testcase_39 AC 3 ms
6,688 KB
testcase_40 AC 3 ms
6,688 KB
testcase_41 AC 3 ms
6,692 KB
testcase_42 AC 3 ms
6,692 KB
testcase_43 AC 3 ms
6,688 KB
testcase_44 AC 3 ms
6,692 KB
testcase_45 AC 2 ms
6,692 KB
testcase_46 AC 3 ms
6,688 KB
testcase_47 TLE -
testcase_48 TLE -
testcase_49 TLE -
testcase_50 TLE -
testcase_51 TLE -
testcase_52 TLE -
testcase_53 TLE -
testcase_54 TLE -
testcase_55 TLE -
testcase_56 TLE -
testcase_57 TLE -
testcase_58 TLE -
testcase_59 TLE -
testcase_60 MLE -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 998244353;
// constexpr int MOD = 1000000007;
constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1};
constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1};
constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U>
inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U>
inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
  IOSetup() {
    std::cin.tie(nullptr);
    std::ios_base::sync_with_stdio(false);
    std::cout << fixed << setprecision(20);
  }
} iosetup;

template <typename T, typename U>
struct MinimumCostSTFlow {
  struct Edge {
    int dst, rev;
    T cap;
    U cost;
    explicit Edge(const int dst, const T cap, const U cost, const int rev)
        : dst(dst), rev(rev), cap(cap), cost(cost) {}
  };

  const U uinf;
  std::vector<std::vector<Edge>> graph;

  explicit MinimumCostSTFlow(const int n,
                             const U uinf = std::numeric_limits<U>::max())
      : uinf(uinf), graph(n), tinf(std::numeric_limits<T>::max()), n(n),
        has_negative_edge(false), prev_v(n, -1), prev_e(n, -1), dist(n),
        potential(n, 0) {}

  void add_edge(const int src, const int dst, const T cap, const U cost) {
    has_negative_edge |= cost < 0;
    graph[src].emplace_back(dst, cap, cost, graph[dst].size());
    graph[dst].emplace_back(src, 0, -cost, graph[src].size() - 1);
  }

  U solve(const int s, const int t, T flow) {
    if (flow == 0) [[unlikely]] return 0;
    U res = 0;
    has_negative_edge ? bellman_ford(s) : dijkstra(s);
    while (true) {
      if (dist[t] == uinf) return uinf;
      res += calc(s, t, &flow);
      if (flow == 0) break;
      dijkstra(s);
    }
    return res;
  }

  U solve(const int s, const int t) {
    U res = 0;
    T flow = tinf;
    bellman_ford(s);
    while (potential[t] < 0 && dist[t] != uinf) {
      res += calc(s, t, &flow);
      dijkstra(s);
    }
    return res;
  }

  std::pair<T, U> minimum_cost_maximum_flow(const int s, const int t,
                                            const T flow) {
    if (flow == 0) [[unlikely]] return {0, 0};
    T f = flow;
    U cost = 0;
    has_negative_edge ? bellman_ford(s) : dijkstra(s);
    while (dist[t] != uinf) {
      cost += calc(s, t, &f);
      if (f == 0) break;
      dijkstra(s);
    }
    return {flow - f, cost};
  }

 private:
  const T tinf;
  const int n;
  bool has_negative_edge;
  std::vector<int> prev_v, prev_e;
  std::vector<U> dist, potential;
  std::priority_queue<std::pair<U, int>, std::vector<std::pair<U, int>>,
                      std::greater<std::pair<U, int>>> que;

  void bellman_ford(const int s) {
    std::fill(dist.begin(), dist.end(), uinf);
    dist[s] = 0;
    bool is_updated = true;
    for (int step = 0; step < n && is_updated; ++step) {
      is_updated = false;
      for (int i = 0; i < n; ++i) {
        if (dist[i] == uinf) continue;
        for (int j = 0; std::cmp_less(j, graph[i].size()); ++j) {
          const Edge& e = graph[i][j];
          if (e.cap > 0 && dist[e.dst] > dist[i] + e.cost) {
            dist[e.dst] = dist[i] + e.cost;
            prev_v[e.dst] = i;
            prev_e[e.dst] = j;
            is_updated = true;
          }
        }
      }
    }
    assert(!is_updated);
    for (int i = 0; i < n; ++i) {
      if (dist[i] != uinf) potential[i] += dist[i];
    }
  }

  void dijkstra(const int s) {
    std::fill(dist.begin(), dist.end(), uinf);
    dist[s] = 0;
    que.emplace(0, s);
    while (!que.empty()) {
      const auto [d, ver] = que.top();
      que.pop();
      if (dist[ver] < d) continue;
      for (int i = 0; std::cmp_less(i, graph[ver].size()); ++i) {
        const Edge& e = graph[ver][i];
        const U nxt = dist[ver] + e.cost + potential[ver] - potential[e.dst];
        if (e.cap > 0 && dist[e.dst] > nxt) {
          dist[e.dst] = nxt;
          prev_v[e.dst] = ver;
          prev_e[e.dst] = i;
          que.emplace(dist[e.dst], e.dst);
        }
      }
    }
    for (int i = 0; i < n; ++i) {
      if (dist[i] != uinf) potential[i] += dist[i];
    }
  }

  U calc(const int s, const int t, T* flow) {
    T f = *flow;
    for (int v = t; v != s; v = prev_v[v]) {
      f = std::min(f, graph[prev_v[v]][prev_e[v]].cap);
    }
    *flow -= f;
    for (int v = t; v != s; v = prev_v[v]) {
      Edge& e = graph[prev_v[v]][prev_e[v]];
      e.cap -= f;
      graph[v][e.rev].cap += f;
    }
    return potential[t] * f;
  }
};

template <typename T>
struct WeightedBipartiteMatching {
  explicit WeightedBipartiteMatching(const int left, const int right)
      : is_built(false), left(left), right(right), mcf(left + right + 2) {}

  void add_edge(const int src, const int dst, const T cost) {
    mcf.add_edge(src, left + dst, 1, -cost);
  }

  T solve() {
    assert(!is_built);
    is_built = true;
    const int s = left + right, t = left + right + 1;
    for (int i = 0; i < left; ++i) {
      mcf.add_edge(s, i, 1, 0);
    }
    for (int i = 0; i < right; ++i) {
      mcf.add_edge(left + i, t, 1, 0);
    }
    return -mcf.minimum_cost_maximum_flow(s, t, left).second;
  }

  std::vector<int> matching() const {
    assert(is_built);
    std::vector<int> res(left, -1);
    for (int i = 0; i < left; ++i) {
      for (const auto& e : mcf.graph[i]) {
        if (e.cap == 0 && left <= e.dst && e.dst < left + right) {
          res[i] = e.dst - left;
          break;
        }
      }
    }
    return res;
  }

 private:
  bool is_built;
  const int left, right;
  MinimumCostSTFlow<int, T> mcf;
};

int main() {
  int n, m; cin >> n >> m;
  vector is_good(n, vector(n, 0));
  while (m--) {
    int u, v; cin >> u >> v; --u; --v;
    is_good[u][v] = true;
  }
  WeightedBipartiteMatching<int> wbm(n, n);
  REP(i, n) FOR(j, i + 1, n) {
    wbm.add_edge(i, j, is_good[i][j] ? 2 : 0);
    wbm.add_edge(j, i, is_good[i][j] ? 2 : 0);
  }
  const int ans = wbm.solve() - n;
  cout << (ans == n - 1 ? n - 2 : ans) << '\n';
  return 0;
}
0