結果
問題 | No.5007 Steiner Space Travel |
ユーザー | jakujaku12 |
提出日時 | 2023-04-29 12:21:28 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 8,498 bytes |
コンパイル時間 | 771 ms |
コンパイル使用メモリ | 87,048 KB |
実行使用メモリ | 83,616 KB |
スコア | 273,240 |
最終ジャッジ日時 | 2023-04-29 12:21:35 |
合計ジャッジ時間 | 5,761 ms |
ジャッジサーバーID (参考情報) |
judge11 / judge15 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 976 ms
83,616 KB |
testcase_01 | TLE | - |
testcase_02 | -- | - |
testcase_03 | -- | - |
testcase_04 | -- | - |
testcase_05 | -- | - |
testcase_06 | -- | - |
testcase_07 | -- | - |
testcase_08 | -- | - |
testcase_09 | -- | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
ソースコード
from itertools import permutations import sys from time import time from random import random, randrange, choice, choices, randint from heapq import heappop, heappush from math import exp START = time() INF=10**9 def get_time(START): return time() - START def dist(p1,p2): x1,y1=p1 x2,y2=p2 return (x1-x2)**2 + (y1-y2)**2 def cost(i: int, j: int): d = dist(Terminals[i], Terminals[j]) if i<N: d*=5 if j<N: d*=5 return d def calc(i: int, j: int, ans ): d = dist(Terminals[ans[i]], Terminals[ans[j]]) if ans[i]<N: d*=5 if ans[j]<N: d*=5 return d def dijkstra(s: int, g: int,mind: int): _dist = [INF] *(N+M) prev = [-1]*(N+M) que = [(0,s)] _dist[s]=0 while que: d, v = heappop(que) if _dist[v] < d: continue if v==g: break for nv in range(T): nd = dist(Terminals[v],Terminals[nv]) if v<N: nd*=5 if nv<N: nd*=5 nd += d # print(nv,nd,file = sys.stderr)s if nd < _dist[nv] and nd <= mind: prev[nv] = v _dist[nv] = nd heappush(que,(nd,nv)) res=[] v = g while v!=s: res.append(v) v = prev[v] return res[::-1] class KMEANS: def __init__(self): self.reps=[] self.dists=[] self.clusters=[] self.keep_flag=True # c_data: クラスタリング対象データ # k: クラスタ数 def Clustering(self, c_datas, k): # 代表点を初期化 self.RepInit(c_datas, k) while self.keep_flag: # 代表点と点の距離を計算 self.ClusterDist(c_datas) # print(self.dists,file=sys.stderr) # 所属クラスタを更新 self.ClusterUpdate() # 代表点を更新 self.RepUpdate(c_datas) # クラスタ代表点の初期化 + 代表点と各点の距離と所属クラスタを格納するリストの初期化 def RepInit(self, c_datas, k): self.reps = [(250,250),(500,250),(750,250),(750,500),(750,750),(500,750),(250,750),(250,500)] self.dists = [[-1 for j in range(k)] for i in range(len(c_datas))] self.clusters=[-1 for i in range(len(c_datas))] # 代表点と点の距離を計算 def ClusterDist(self, c_datas): for (i, c_data) in enumerate(c_datas): for (j, rep) in enumerate(self.reps): # 各点の代表点との距離を計算 self.dists[i][j] = dist(c_data, rep) # 所属クラスタ更新 def ClusterUpdate(self): flag=False for (i, dist) in enumerate(self.dists): # クラスタ更新があった場合はwhileループのフラグをTrueに維持 best_dist=INF best_v=-1 for j,d in enumerate(dist): if d<best_dist: best_dist = d best_v = j if self.clusters[i] != best_v: flag=True # 距離のリストから最小値の引数を得る self.clusters[i] = best_v self.keep_flag=flag # クラスタの代表点を更新 def RepUpdate(self, c_datas): for c_num in range(len(self.reps)): cluster_points=[] for i, (cluster, c_data) in enumerate(zip(self.clusters,c_datas)): if cluster == c_num: # clauster_pointsにc_numクラスタの点を追加 cluster_points.append(c_data) if len(cluster_points) == 0: cluster_points.append(self.reps[c_num]) # 点の平均を求め代表点を更新 self.reps[c_num] = (sum([x for x,y in cluster_points])//len(cluster_points),sum([y for x,y in cluster_points])//len(cluster_points)) def calc_score(ans): score = 0 for i in range(len(ans)-1): score += calc(i,i+1,ans) return score def calc_score2(ans): score = 0 for i in range(len(ans)-1): score += Ecost[ans[i]][ans[i+1]] return score def probability(diff): start_temp=50 end_temp=10 temp = start_temp + (end_temp - start_temp) * get_time(START) / 0.85 return exp(diff/temp) # インプット N,M=map(int,input().split()) Terminals = [tuple(map(int,input().split())) for _ in range(N)] KM=KMEANS() KM.Clustering(Terminals,M) Stations = KM.reps[:] print(Stations,file= sys.stderr) Terminals += Stations T=len(Terminals) #各Terminalの移動コストをワーシャルフロイトで計算 Ecost=[[INF]*T for i in range(T)] for i,t1 in enumerate(Terminals): for j,t2 in enumerate(Terminals): Ecost[i][j]=cost(i,j) #ワーシャルフロイト for k in range(T): for i in range(T): for j in range(T): Ecost[i][j]=min(Ecost[i][j],Ecost[i][k]+Ecost[k][j]) #ステーションを回る順序を全探索で決定 #ステーション毎に貪欲に回る順序を決定 StationCluster=[[] for i in range(M)] TerminalsStation=[0]*N for i in range(N): best_dist=INF best_st=-1 for j in range(M): d = dist(Terminals[i],Terminals[j+N]) if d<best_dist: best_dist=d best_st=j assert best_st!=-1 StationCluster[best_st].append(i) TerminalsStation[i]=best_st best_dist = INF best_per = [] for per in permutations(range(M-1),M-1): station_list=[TerminalsStation[0]+N] for s in per: if s>=TerminalsStation[0]:s+=1 station_list.append(s+N) station_list.append(TerminalsStation[0]+N) d = calc_score2(station_list) if d<best_dist: best_dist=d best_per=station_list[:] print(best_per,file=sys.stderr) ans = [0] for i in range(M): for v in StationCluster[best_per[i]-N]: if v==0: continue ans.append(v) ans.append(0) print(ans, file = sys.stderr) # print(StationCluster, file = sys.stderr) Tind=[0]*N Tinv=[0]*N for i,x in enumerate(ans[:N]): Tind[x]=i Tinv[i]=x # 山登り n = len(ans) loop_cnt = 0 update_cnt=0 best_score = calc_score2(ans) dx=(10,-10,0,0,5,5,-5,-5) dy=(0,0,10,-10,5,-5,5,-5) # print(get_time(START),file=sys.stderr) while get_time(START) < 0.60: loop_cnt+=1 p=random() if p<0.2: v1 = randrange(1,n-1) v2 = randrange(1,n-1) while v1==v2: v2 = randrange(1,n-1) ans[v1],ans[v2] = ans[v2],ans[v1] current_score = calc_score2(ans) diff = best_score - current_score if diff>0: best_score = current_score update_cnt += 1 #print("swap",current_score, file=sys.stderr) else: ans[v1],ans[v2] = ans[v2],ans[v1] else: #randomでクラスターを選んでその中でSwap v1=randint(1,n-1) v2 = choice(StationCluster[TerminalsStation[ans[v1]]]) while ans[v1]==v2 or v2 == 0: v2 = choice(StationCluster[TerminalsStation[ans[v1]]]) ans[v1],ans[Tind[v2]] = ans[Tind[v2]],ans[v1] current_score = calc_score2(ans) diff = best_score - current_score if diff>0: best_score = current_score update_cnt += 1 #print("swap",current_score, file=sys.stderr) else: ans[v1],ans[Tind[v2]] = ans[Tind[v2]],ans[v1] # アウトプット ans.append(0) output=[0] for i in range(len(ans)-1): output+=dijkstra(ans[i],ans[i+1],Ecost[ans[i]][ans[i+1]]) loopcnt2=0 while get_time(START)<0.87: loopcnt2+=1 v = randrange(N,N+M) original = Terminals[v][:] best_i = -1 sub_best_score = best_score for i in range(8): Terminals[v] = (original[0]+dx[i],original[1]+dy[i]) current_score = calc_score(output) if current_score < sub_best_score: sub_best_score = current_score best_i = i if best_i != -1: best_score = sub_best_score Terminals[v] = (original[0]+dx[best_i], original[1]+dy[best_i]) #print("move",best_score, file=sys.stderr) else: Terminals[v]=original[:] for pos in Terminals[N:]: print(*pos) print(len(output)) for v in output: if v<N: print(1,v+1) else: print(2,v+1-N) print("Score", 10**9//(1000+calc_score(output)**0.5), file=sys.stderr) print("Loop", loop_cnt, loopcnt2, update_cnt, file=sys.stderr) print("time:",get_time(START) * 1000, file=sys.stderr)