結果
| 問題 |
No.8030 ミラー・ラビン素数判定法のテスト
|
| ユーザー |
AC2K
|
| 提出日時 | 2023-05-03 22:56:40 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 44 ms / 9,973 ms |
| コード長 | 11,852 bytes |
| コンパイル時間 | 764 ms |
| コンパイル使用メモリ | 83,736 KB |
| 実行使用メモリ | 5,248 KB |
| 最終ジャッジ日時 | 2024-11-21 22:14:28 |
| 合計ジャッジ時間 | 1,507 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 10 |
ソースコード
#line 1 "test/yuki/No3030.test.cpp"
#include<iostream>
#line 2 "src/math/dynamic_modint.hpp"
#include <cassert>
#line 2 "src/internal/barrett.hpp"
namespace kyopro {
namespace internal {
/// @brief barrett reduction
/// @ref https://github.com/atcoder/ac-library/blob/master/atcoder/internal_math.hpp
class barrett {
using u32 = uint32_t;
using u64 = uint64_t;
u64 m;
u64 im;
public:
explicit barrett() = default;
explicit barrett(u64 m_)
: m(m_), im((u64)(long double)static_cast<u64>(-1) / m_ + 1) {}
u64 get_mod() const { return m; }
constexpr u64 reduce(int64_t a) const {
if (a < 0) return m - reduce(-a);
u64 q = ((__uint128_t)a * im) >> 64;
a -= m * q;
if (a >= m) a -= m;
return a;
}
constexpr u64 mul(u64 a, u64 b) const {
if (a == 0 || b == 0) {
return 0;
}
u64 z = a;
z *= b;
u64 x = (u64)(((__uint128_t)z * im) >> 64);
u32 v = (u32)(z - x * m);
if (v >= m) v += m;
return v;
}
};
}; // namespace internal
}; // namespace kyopro
#line 3 "src/internal/montgomery.hpp"
#include <limits>
#include <numeric>
#line 5 "src/internal/type_traits.hpp"
#include <typeinfo>
namespace kyopro {
namespace internal {
/// @ref https://qiita.com/kazatsuyu/items/f8c3b304e7f8b35263d8
template <typename... Args> struct first_enabled {};
template <typename T, typename... Args>
struct first_enabled<std::enable_if<true, T>, Args...> {
using type = T;
};
template <typename T, typename... Args>
struct first_enabled<std::enable_if<false, T>, Args...>
: first_enabled<Args...> {};
template <typename T, typename... Args> struct first_enabled<T, Args...> {
using type = T;
};
template <typename... Args>
using first_enabled_t = typename first_enabled<Args...>::type;
template <int dgt> struct int_least {
static_assert(dgt <= 128);
using type = first_enabled_t<std::enable_if<dgt <= 8, __int8_t>,
std::enable_if<dgt <= 16, __int16_t>,
std::enable_if<dgt <= 32, __int32_t>,
std::enable_if<dgt <= 64, __int64_t>,
std::enable_if<dgt <= 128, __int128_t> >;
};
template <int dgt> struct uint_least {
static_assert(dgt <= 128);
using type = first_enabled_t<std::enable_if<dgt <= 8, __uint8_t>,
std::enable_if<dgt <= 16, __uint16_t>,
std::enable_if<dgt <= 32, __uint32_t>,
std::enable_if<dgt <= 64, __uint64_t>,
std::enable_if<dgt <= 128, __uint128_t> >;
};
template <int dgt> using int_least_t = typename int_least<dgt>::type;
template <int dgt> using uint_least_t = typename uint_least<dgt>::type;
template <typename T>
using double_size_uint_t = uint_least_t<2 * std::numeric_limits<T>::digits>;
template <typename T>
using double_size_int_t = int_least_t<2 * std::numeric_limits<T>::digits>;
}; // namespace internal
}; // namespace kyopro
#line 6 "src/internal/montgomery.hpp"
namespace kyopro {
namespace internal {
using u32 = uint32_t;
using u64 = uint64_t;
using i32 = int32_t;
using i64 = int64_t;
using u128 = __uint128_t;
using i128 = __int128_t;
/// @brief MontgomeryReduction
/// @ref
template <typename T>
class Montgomery {
static constexpr int lg = std::numeric_limits<T>::digits;
using LargeT = internal::double_size_uint_t<T>;
T mod, r, r2, minv;
T inv() {
T t = 0, res = 0;
for (int i = 0; i < lg; ++i) {
if (~t & 1) {
t += mod;
res += static_cast<T>(1) << i;
}
t >>= 1;
}
return res;
}
public:
Montgomery() = default;
constexpr T get_mod() { return mod; }
constexpr int get_lg() { return lg; }
void set_mod(T m) {
assert(m > 0);
assert(m & 1);
mod = m;
r = (-static_cast<T>(mod)) % mod;
r2 = (-static_cast<LargeT>(mod)) % mod;
minv = inv();
}
T reduce(LargeT x) const {
u64 res =
(x + static_cast<LargeT>(static_cast<T>(x) * minv) * mod) >> lg;
if (res >= mod) res -= mod;
return res;
}
T generate(LargeT x) { return reduce(x * r2); }
T mult(T x, T y) { return reduce((LargeT)x * y); }
};
}; // namespace internal
}; // namespace kyopro
#line 6 "src/math/dynamic_modint.hpp"
namespace kyopro {
/// @note mod は32bitじゃないとバグる
template <int id = -1>
class barrett_modint {
using u32 = uint32_t;
using u64 = uint64_t;
using i32 = int32_t;
using i64 = int64_t;
using br = internal::barrett;
static br brt;
static u32 mod;
u32 v; // value
public:
static void set_mod(u32 mod_) {
brt = br(mod_);
mod = mod_;
}
public:
explicit constexpr barrett_modint() : v(0) {
assert(mod);
}
explicit constexpr barrett_modint(i64 v_) : v(brt.reduce(v_)) {
assert(mod);
}
u32 val() const { return v; }
static u32 get_mod() { return mod; }
using mint = barrett_modint<id>;
constexpr mint& operator=(i64 r) {
v = brt.reduce(r);
return (*this);
}
constexpr mint& operator+=(const mint& r) {
v += r.v;
if (v >= mod) {
v -= mod;
}
return (*this);
}
constexpr mint& operator-=(const mint& r) {
v += mod - r.v;
if (v >= mod) {
v -= mod;
}
return (*this);
}
constexpr mint& operator*=(const mint& r) {
v = brt.mul(v, r.v);
return (*this);
}
constexpr mint operator+(const mint& r) const { return mint(*this) += r; }
constexpr mint operator-(const mint& r) const { return mint(*this) -= r; }
constexpr mint operator*(const mint& r) const { return mint(*this) *= r; }
constexpr mint& operator+=(i64 r) { return (*this) += mint(r); }
constexpr mint& operator-=(i64 r) { return (*this) -= mint(r); }
constexpr mint& operator*=(i64 r) { return (*this) *= mint(r); }
friend mint operator+(i64 l, const mint& r) { return mint(l) += r; }
friend mint operator+(const mint& l, i64 r) { return mint(l) += r; }
friend mint operator-(i64 l, const mint& r) { return mint(l) -= r; }
friend mint operator-(const mint& l, i64 r) { return mint(l) -= r; }
friend mint operator*(i64 l, const mint& r) { return mint(l) *= r; }
friend mint operator*(const mint& l, i64 r) { return mint(l) += r; }
friend std::ostream& operator<<(std::ostream& os, const mint& mt) {
os << mt.val();
return os;
}
friend std::istream& operator>>(std::istream& is, mint& mt) {
i64 v_;
is >> v_;
mt = v_;
return is;
}
template <typename T>
mint pow(T e) const {
mint res(1), base(*this);
while (e) {
if (e & 1) {
res *= base;
}
e >>= 1;
base *= base;
}
return res;
}
mint inv() const { return pow(mod - 2); }
mint& operator/=(const mint& r) { return (*this) *= r.inv(); }
mint operator/(const mint& r) const { return mint(*this) *= r.inv(); }
mint& operator/=(i64 r) { return (*this) /= mint(r); }
friend mint operator/(const mint& l, i64 r) { return mint(l) /= r; }
friend mint operator/(i64 l, const mint& r) { return mint(l) /= r; }
};
}; // namespace kyopro
template <int id>
typename kyopro::barrett_modint<id>::u32 kyopro::barrett_modint<id>::mod;
template <int id>
typename kyopro::barrett_modint<id>::br kyopro::barrett_modint<id>::brt;
namespace kyopro {
template <typename T, int id = -1>
class dynamic_modint {
using LargeT = internal::double_size_uint_t<T>;
static T mod;
static internal::Montgomery<T> mr;
public:
static void set_mod(T mod_) {
mr.set_mod(mod_);
mod = mod_;
}
static T get_mod() { return mod; }
private:
T v;
public:
dynamic_modint(T v_ = 0) {
assert(mod);
v = mr.generate(v_);
}
T val() const { return mr.reduce(v); }
using mint = dynamic_modint<T, id>;
mint& operator+=(const mint& r) {
v += r.v;
if (v >= mr.get_mod()) {
v -= mr.get_mod();
}
return (*this);
}
mint& operator-=(const mint& r) {
v += mr.get_mod() - r.v;
if (v >= mr.get_mod) {
v -= mr.get_mod();
}
return (*this);
}
mint& operator*=(const mint& r) {
v = mr.mult(v, r.v);
return (*this);
}
mint operator+(const mint& r) { return mint(*this) += r; }
mint operator-(const mint& r) { return mint(*this) -= r; }
mint operator*(const mint& r) { return mint(*this) *= r; }
mint& operator=(const T& v_) {
(*this) = mint(v_);
return (*this);
}
friend std::ostream& operator<<(std::ostream& os, const mint& mt) {
os << mt.val();
return os;
}
friend std::istream& operator>>(std::istream& is, mint& mt) {
T v_;
is >> v_;
mt = v_;
return is;
}
template <typename P>
mint pow(P e) const {
assert(e >= 0);
mint res(1), base(*this);
while (e) {
if (e & 1) {
res *= base;
}
e >>= 1;
base *= base;
}
return res;
}
mint inv() const { return pow(mod - 2); }
mint& operator/=(const mint& r) { return (*this) *= r.inv(); }
mint operator/(const mint& r) const { return mint(*this) *= r.inv(); }
mint& operator/=(T r) { return (*this) /= mint(r); }
friend mint operator/(const mint& l, T r) { return mint(l) /= r; }
friend mint operator/(T l, const mint& r) { return mint(l) /= r; }
};
}; // namespace kyopro
template <typename T, int id>
T kyopro::dynamic_modint<T, id>::mod;
template <typename T, int id>
kyopro::internal::Montgomery<T> kyopro::dynamic_modint<T, id>::mr;
/// @brief dynamic modint
/// @docs docs/math/dynamic_modint.md
#line 3 "src/math/miller.hpp"
namespace kyopro {
namespace miller {
using i128 = __int128_t;
using u128 = __uint128_t;
using u64 = uint64_t;
using u32 = uint32_t;
using i128 = __int128_t;
using u128 = __uint128_t;
using u64 = uint64_t;
using u32 = uint32_t;
template <typename T, typename mint,const int bases[],int length>
constexpr bool miller_rabin(T n) {
T d = n - 1;
while (~d & 1) {
d >>= 1;
}
const T rev = n - 1;
if (mint::get_mod() != n) {
mint::set_mod(n);
}
for (int i = 0; i < length; ++i) {
if (n <= bases[i]) {
return true;
}
T t = d;
mint y = mint(bases[i]).pow(t);
while (t != n - 1 && y.val() != 1 && y.val() != rev) {
y *= y;
t <<= 1;
}
if (y.val() != rev && (~t & 1)) return false;
}
return true;
}
constexpr int bases_int[3] = {2, 7, 61}; // intだと、2,7,61で十分
constexpr int bases_ll[7] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};
template<typename T>
constexpr bool inline is_prime(T n) {
if (n < 2) {
return false;
} else if (n == 2) {
return true;
} else if (~n & 1) {
return false;
}
if (n < (1ul << 31)) {
return miller_rabin<T, dynamic_modint<u32>, bases_int, 3>(n);
} else {
return miller_rabin<T, dynamic_modint<u64>, bases_ll, 7>(n);
}
}
}; // namespace miller
}; // namespace kyopro
#line 3 "test/yuki/No3030.test.cpp"
int main(){
int n;
scanf("%d", &n);
for (int i = 0; i < n; ++i){
long long x;
scanf("%lld", &x);
printf("%lld %c\n", x, kyopro::miller::is_prime(x) ? '1' : '0');
}
}
AC2K