結果

問題 No.2294 Union Path Query (Easy)
ユーザー 👑 emthrmemthrm
提出日時 2023-05-05 23:19:02
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
RE  
実行時間 -
コード長 7,797 bytes
コンパイル時間 3,175 ms
コンパイル使用メモリ 260,660 KB
実行使用メモリ 40,564 KB
最終ジャッジ日時 2024-05-02 18:31:20
合計ジャッジ時間 14,797 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 RE -
testcase_01 RE -
testcase_02 RE -
testcase_03 RE -
testcase_04 RE -
testcase_05 RE -
testcase_06 RE -
testcase_07 RE -
testcase_08 RE -
testcase_09 RE -
testcase_10 RE -
testcase_11 RE -
testcase_12 RE -
testcase_13 RE -
testcase_14 RE -
testcase_15 RE -
testcase_16 RE -
testcase_17 RE -
testcase_18 RE -
testcase_19 RE -
testcase_20 RE -
testcase_21 RE -
testcase_22 RE -
testcase_23 RE -
testcase_24 RE -
testcase_25 AC 2 ms
5,376 KB
testcase_26 RE -
testcase_27 RE -
testcase_28 RE -
testcase_29 RE -
testcase_30 RE -
testcase_31 RE -
testcase_32 RE -
testcase_33 RE -
testcase_34 RE -
testcase_35 RE -
testcase_36 RE -
testcase_37 RE -
testcase_38 RE -
testcase_39 RE -
testcase_40 RE -
testcase_41 RE -
testcase_42 RE -
testcase_43 RE -
testcase_44 RE -
testcase_45 RE -
testcase_46 RE -
testcase_47 RE -
testcase_48 RE -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 998244353;
// constexpr int MOD = 1000000007;
constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1};
constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1};
constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U>
inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U>
inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
  IOSetup() {
    std::cin.tie(nullptr);
    std::ios_base::sync_with_stdio(false);
    std::cout << fixed << setprecision(20);
  }
} iosetup;

struct UnionFind {
  explicit UnionFind(const int n) : data(n, -1) {}

  int root(const int ver) {
    return data[ver] < 0 ? ver : data[ver] = root(data[ver]);
  }

  bool unite(int u, int v) {
    u = root(u);
    v = root(v);
    if (u == v) return false;
    if (data[u] > data[v]) std::swap(u, v);
    data[u] += data[v];
    data[v] = u;
    return true;
  }

  bool is_same(const int u, const int v) { return root(u) == root(v); }

  int size(const int ver) { return -data[root(ver)]; }

 private:
  std::vector<int> data;
};

template <typename CostType>
struct Edge {
  CostType cost;
  int src, dst;

  explicit Edge(const int src, const int dst, const CostType cost = 0)
      : cost(cost), src(src), dst(dst) {}

  auto operator<=>(const Edge& x) const = default;
};

template <int M>
struct MInt {
  unsigned int v;

  MInt() : v(0) {}
  MInt(const long long x) : v(x >= 0 ? x % M : x % M + M) {}

  static constexpr int get_mod() { return M; }
  static void set_mod(const int divisor) { assert(divisor == M); }

  static void init(const int x) {
    inv<true>(x);
    fact(x);
    fact_inv(x);
  }

  template <bool MEMOIZES = false>
  static MInt inv(const int n) {
    // assert(0 <= n && n < M && std::gcd(n, M) == 1);
    static std::vector<MInt> inverse{0, 1};
    const int prev = inverse.size();
    if (n < prev) return inverse[n];
    if constexpr (MEMOIZES) {
      // "n!" and "M" must be disjoint.
      inverse.resize(n + 1);
      for (int i = prev; i <= n; ++i) {
        inverse[i] = -inverse[M % i] * (M / i);
      }
      return inverse[n];
    }
    int u = 1, v = 0;
    for (unsigned int a = n, b = M; b;) {
      const unsigned int q = a / b;
      std::swap(a -= q * b, b);
      std::swap(u -= q * v, v);
    }
    return u;
  }

  static MInt fact(const int n) {
    static std::vector<MInt> factorial{1};
    const int prev = factorial.size();
    if (n >= prev) {
      factorial.resize(n + 1);
      for (int i = prev; i <= n; ++i) {
        factorial[i] = factorial[i - 1] * i;
      }
    }
    return factorial[n];
  }

  static MInt fact_inv(const int n) {
    static std::vector<MInt> f_inv{1};
    const int prev = f_inv.size();
    if (n >= prev) {
      f_inv.resize(n + 1);
      f_inv[n] = inv(fact(n).v);
      for (int i = n; i > prev; --i) {
        f_inv[i - 1] = f_inv[i] * i;
      }
    }
    return f_inv[n];
  }

  static MInt nCk(const int n, const int k) {
    if (n < 0 || n < k || k < 0) return 0;
    return fact(n) * (n - k < k ? fact_inv(k) * fact_inv(n - k) :
                                  fact_inv(n - k) * fact_inv(k));
  }
  static MInt nPk(const int n, const int k) {
    return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k);
  }
  static MInt nHk(const int n, const int k) {
    return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k));
  }

  static MInt large_nCk(long long n, const int k) {
    if (n < 0 || n < k || k < 0) return 0;
    inv<true>(k);
    MInt res = 1;
    for (int i = 1; i <= k; ++i) {
      res *= inv(i) * n--;
    }
    return res;
  }

  MInt pow(long long exponent) const {
    MInt res = 1, tmp = *this;
    for (; exponent > 0; exponent >>= 1) {
      if (exponent & 1) res *= tmp;
      tmp *= tmp;
    }
    return res;
  }

  MInt& operator+=(const MInt& x) {
    if (std::cmp_greater_equal(v += x.v, M)) v -= M;
    return *this;
  }
  MInt& operator-=(const MInt& x) {
    if (std::cmp_greater_equal(v += M - x.v, M)) v -= M;
    return *this;
  }
  MInt& operator*=(const MInt& x) {
    v = static_cast<unsigned long long>(v) * x.v % M;
    return *this;
  }
  MInt& operator/=(const MInt& x) { return *this *= inv(x.v); }

  auto operator<=>(const MInt& x) const = default;

  MInt& operator++() {
    if (std::cmp_equal(++v, M)) v = 0;
    return *this;
  }
  MInt operator++(int) {
    const MInt res = *this;
    ++*this;
    return res;
  }
  MInt& operator--() {
    v = (v == 0 ? M - 1 : v - 1);
    return *this;
  }
  MInt operator--(int) {
    const MInt res = *this;
    --*this;
    return res;
  }

  MInt operator+() const { return *this; }
  MInt operator-() const { return MInt(v ? M - v : 0); }

  MInt operator+(const MInt& x) const { return MInt(*this) += x; }
  MInt operator-(const MInt& x) const { return MInt(*this) -= x; }
  MInt operator*(const MInt& x) const { return MInt(*this) *= x; }
  MInt operator/(const MInt& x) const { return MInt(*this) /= x; }

  friend std::ostream& operator<<(std::ostream& os, const MInt& x) {
    return os << x.v;
  }
  friend std::istream& operator>>(std::istream& is, MInt& x) {
    long long v;
    is >> v;
    x = MInt(v);
    return is;
  }
};
using ModInt = MInt<MOD>;

int main() {
  constexpr int B = 30;
  int n, x, q; cin >> n >> x >> q;
  vector<vector<Edge<int>>> graph(n);
  vector<int> from_root(n, 0);
  vector<ModInt> q3(n, 0);
  vector<array<int, B>> weights(n);
  UnionFind union_find(n);
  const auto dfs = [&](auto dfs, const int r, const int p, const int v, const int w) -> void {
    from_root[v] = w;
    REP(bit, B) weights[r][bit] += (w >> bit & 1);
    for (const Edge<int>& e : graph[v]) {
      if (e.dst != p) dfs(dfs, r, v, e.dst, w ^ e.cost);
    }
  };
  while (q--) {
    int type; cin >> type;
    if (type == 1) {
      int v, w; cin >> v >> w;
      graph[v].emplace_back(v, x, w);
      graph[x].emplace_back(x, v, w);
      const int rv = union_find.root(v), rx = union_find.root(x);
      const int sizev = union_find.size(v), sizex = union_find.size(x);
      REP(bit, B) {
        const int v1 = ((from_root[v] >> bit & 1) ? sizev - weights[rv][bit] : weights[rv][bit]);
        const int x1 = ((from_root[x] >> bit & 1) ? sizex - weights[rx][bit] : weights[rx][bit]);
        if (w >> bit & 1) {
          q3[rv] += (ll{v1} * x1 + ll{sizev - v1} * (sizex - x1)) * (1 << bit);
        } else {
          q3[rv] += (ll{sizev - v1} * x1 + ll{v1} * (sizex - x1)) * (1 << bit);
        }
      }
      ranges::fill(weights[sizev > sizex ? rx : rv], 0);
      assert(union_find.unite(v, w));
      const int r = union_find.root(v), other = r ^ rv ^ rx;
      q3[r] += q3[other];
      q3[other] = 0;
      REP(bit, B) weights[r][bit] += weights[other][bit];
      ranges::fill(weights[other], 0);
      (sizev > sizex ? dfs(dfs, r, v, x, from_root[v] ^ w) : dfs(dfs, r, x, v, from_root[x] ^ w));
    } else if (type == 2) {
      int u, v; cin >> u >> v;
      if (union_find.is_same(u, v)) {
        const int ans = from_root[u] ^ from_root[v];
        cout << ans << '\n';
        x += ans;
      } else {
        cout << "-1\n";
      }
    } else if (type == 3) {
      int v; cin >> v;
      cout << q3[union_find.root(v)] << '\n';
    } else if (type == 4) {
      int value; cin >> value;
      x += value;
    }
    x %= n;
    // cout << "[x] " << x << '\n';
    // REP(i, n) cout << from_root[i] << " \n"[i + 1 == n];
    // REP(i, n) cout << q3[i] << " \n"[i + 1 == n];
  }
  return 0;
}
0