結果
| 問題 |
No.2294 Union Path Query (Easy)
|
| コンテスト | |
| ユーザー |
emthrm
|
| 提出日時 | 2023-05-05 23:19:02 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 7,797 bytes |
| コンパイル時間 | 4,056 ms |
| コンパイル使用メモリ | 260,144 KB |
| 実行使用メモリ | 40,308 KB |
| 最終ジャッジ日時 | 2024-11-23 12:11:03 |
| 合計ジャッジ時間 | 16,918 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | RE * 3 |
| other | AC * 1 RE * 45 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 998244353;
// constexpr int MOD = 1000000007;
constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1};
constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1};
constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U>
inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U>
inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
IOSetup() {
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
std::cout << fixed << setprecision(20);
}
} iosetup;
struct UnionFind {
explicit UnionFind(const int n) : data(n, -1) {}
int root(const int ver) {
return data[ver] < 0 ? ver : data[ver] = root(data[ver]);
}
bool unite(int u, int v) {
u = root(u);
v = root(v);
if (u == v) return false;
if (data[u] > data[v]) std::swap(u, v);
data[u] += data[v];
data[v] = u;
return true;
}
bool is_same(const int u, const int v) { return root(u) == root(v); }
int size(const int ver) { return -data[root(ver)]; }
private:
std::vector<int> data;
};
template <typename CostType>
struct Edge {
CostType cost;
int src, dst;
explicit Edge(const int src, const int dst, const CostType cost = 0)
: cost(cost), src(src), dst(dst) {}
auto operator<=>(const Edge& x) const = default;
};
template <int M>
struct MInt {
unsigned int v;
MInt() : v(0) {}
MInt(const long long x) : v(x >= 0 ? x % M : x % M + M) {}
static constexpr int get_mod() { return M; }
static void set_mod(const int divisor) { assert(divisor == M); }
static void init(const int x) {
inv<true>(x);
fact(x);
fact_inv(x);
}
template <bool MEMOIZES = false>
static MInt inv(const int n) {
// assert(0 <= n && n < M && std::gcd(n, M) == 1);
static std::vector<MInt> inverse{0, 1};
const int prev = inverse.size();
if (n < prev) return inverse[n];
if constexpr (MEMOIZES) {
// "n!" and "M" must be disjoint.
inverse.resize(n + 1);
for (int i = prev; i <= n; ++i) {
inverse[i] = -inverse[M % i] * (M / i);
}
return inverse[n];
}
int u = 1, v = 0;
for (unsigned int a = n, b = M; b;) {
const unsigned int q = a / b;
std::swap(a -= q * b, b);
std::swap(u -= q * v, v);
}
return u;
}
static MInt fact(const int n) {
static std::vector<MInt> factorial{1};
const int prev = factorial.size();
if (n >= prev) {
factorial.resize(n + 1);
for (int i = prev; i <= n; ++i) {
factorial[i] = factorial[i - 1] * i;
}
}
return factorial[n];
}
static MInt fact_inv(const int n) {
static std::vector<MInt> f_inv{1};
const int prev = f_inv.size();
if (n >= prev) {
f_inv.resize(n + 1);
f_inv[n] = inv(fact(n).v);
for (int i = n; i > prev; --i) {
f_inv[i - 1] = f_inv[i] * i;
}
}
return f_inv[n];
}
static MInt nCk(const int n, const int k) {
if (n < 0 || n < k || k < 0) return 0;
return fact(n) * (n - k < k ? fact_inv(k) * fact_inv(n - k) :
fact_inv(n - k) * fact_inv(k));
}
static MInt nPk(const int n, const int k) {
return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k);
}
static MInt nHk(const int n, const int k) {
return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k));
}
static MInt large_nCk(long long n, const int k) {
if (n < 0 || n < k || k < 0) return 0;
inv<true>(k);
MInt res = 1;
for (int i = 1; i <= k; ++i) {
res *= inv(i) * n--;
}
return res;
}
MInt pow(long long exponent) const {
MInt res = 1, tmp = *this;
for (; exponent > 0; exponent >>= 1) {
if (exponent & 1) res *= tmp;
tmp *= tmp;
}
return res;
}
MInt& operator+=(const MInt& x) {
if (std::cmp_greater_equal(v += x.v, M)) v -= M;
return *this;
}
MInt& operator-=(const MInt& x) {
if (std::cmp_greater_equal(v += M - x.v, M)) v -= M;
return *this;
}
MInt& operator*=(const MInt& x) {
v = static_cast<unsigned long long>(v) * x.v % M;
return *this;
}
MInt& operator/=(const MInt& x) { return *this *= inv(x.v); }
auto operator<=>(const MInt& x) const = default;
MInt& operator++() {
if (std::cmp_equal(++v, M)) v = 0;
return *this;
}
MInt operator++(int) {
const MInt res = *this;
++*this;
return res;
}
MInt& operator--() {
v = (v == 0 ? M - 1 : v - 1);
return *this;
}
MInt operator--(int) {
const MInt res = *this;
--*this;
return res;
}
MInt operator+() const { return *this; }
MInt operator-() const { return MInt(v ? M - v : 0); }
MInt operator+(const MInt& x) const { return MInt(*this) += x; }
MInt operator-(const MInt& x) const { return MInt(*this) -= x; }
MInt operator*(const MInt& x) const { return MInt(*this) *= x; }
MInt operator/(const MInt& x) const { return MInt(*this) /= x; }
friend std::ostream& operator<<(std::ostream& os, const MInt& x) {
return os << x.v;
}
friend std::istream& operator>>(std::istream& is, MInt& x) {
long long v;
is >> v;
x = MInt(v);
return is;
}
};
using ModInt = MInt<MOD>;
int main() {
constexpr int B = 30;
int n, x, q; cin >> n >> x >> q;
vector<vector<Edge<int>>> graph(n);
vector<int> from_root(n, 0);
vector<ModInt> q3(n, 0);
vector<array<int, B>> weights(n);
UnionFind union_find(n);
const auto dfs = [&](auto dfs, const int r, const int p, const int v, const int w) -> void {
from_root[v] = w;
REP(bit, B) weights[r][bit] += (w >> bit & 1);
for (const Edge<int>& e : graph[v]) {
if (e.dst != p) dfs(dfs, r, v, e.dst, w ^ e.cost);
}
};
while (q--) {
int type; cin >> type;
if (type == 1) {
int v, w; cin >> v >> w;
graph[v].emplace_back(v, x, w);
graph[x].emplace_back(x, v, w);
const int rv = union_find.root(v), rx = union_find.root(x);
const int sizev = union_find.size(v), sizex = union_find.size(x);
REP(bit, B) {
const int v1 = ((from_root[v] >> bit & 1) ? sizev - weights[rv][bit] : weights[rv][bit]);
const int x1 = ((from_root[x] >> bit & 1) ? sizex - weights[rx][bit] : weights[rx][bit]);
if (w >> bit & 1) {
q3[rv] += (ll{v1} * x1 + ll{sizev - v1} * (sizex - x1)) * (1 << bit);
} else {
q3[rv] += (ll{sizev - v1} * x1 + ll{v1} * (sizex - x1)) * (1 << bit);
}
}
ranges::fill(weights[sizev > sizex ? rx : rv], 0);
assert(union_find.unite(v, w));
const int r = union_find.root(v), other = r ^ rv ^ rx;
q3[r] += q3[other];
q3[other] = 0;
REP(bit, B) weights[r][bit] += weights[other][bit];
ranges::fill(weights[other], 0);
(sizev > sizex ? dfs(dfs, r, v, x, from_root[v] ^ w) : dfs(dfs, r, x, v, from_root[x] ^ w));
} else if (type == 2) {
int u, v; cin >> u >> v;
if (union_find.is_same(u, v)) {
const int ans = from_root[u] ^ from_root[v];
cout << ans << '\n';
x += ans;
} else {
cout << "-1\n";
}
} else if (type == 3) {
int v; cin >> v;
cout << q3[union_find.root(v)] << '\n';
} else if (type == 4) {
int value; cin >> value;
x += value;
}
x %= n;
// cout << "[x] " << x << '\n';
// REP(i, n) cout << from_root[i] << " \n"[i + 1 == n];
// REP(i, n) cout << q3[i] << " \n"[i + 1 == n];
}
return 0;
}
emthrm