結果
問題 | No.2291 Union Find Estimate |
ユーザー | tipstar0125 |
提出日時 | 2023-05-06 00:52:30 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 333 ms / 2,000 ms |
コード長 | 15,931 bytes |
コンパイル時間 | 14,166 ms |
コンパイル使用メモリ | 387,048 KB |
実行使用メモリ | 11,644 KB |
最終ジャッジ日時 | 2024-11-23 13:36:36 |
合計ジャッジ時間 | 15,976 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,248 KB |
testcase_02 | AC | 333 ms
5,248 KB |
testcase_03 | AC | 46 ms
11,644 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 2 ms
5,248 KB |
testcase_08 | AC | 3 ms
5,248 KB |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | AC | 21 ms
5,248 KB |
testcase_11 | AC | 39 ms
5,248 KB |
testcase_12 | AC | 70 ms
5,248 KB |
testcase_13 | AC | 9 ms
5,248 KB |
testcase_14 | AC | 10 ms
5,248 KB |
testcase_15 | AC | 34 ms
6,784 KB |
testcase_16 | AC | 8 ms
5,248 KB |
testcase_17 | AC | 4 ms
5,248 KB |
testcase_18 | AC | 3 ms
5,248 KB |
testcase_19 | AC | 20 ms
5,248 KB |
ソースコード
#![allow(non_snake_case)] #![allow(unused_imports)] #![allow(unused_macros)] #![allow(clippy::needless_range_loop)] #![allow(clippy::comparison_chain)] #![allow(clippy::nonminimal_bool)] #![allow(clippy::neg_multiply)] #![allow(dead_code)] use std::cmp::Reverse; use std::collections::{BTreeMap, BTreeSet, BinaryHeap, VecDeque}; // const MOD: usize = 1e9 as usize + 7; const MOD: usize = 998244353; // const MOD: usize = 2147483647; fn read<T: std::str::FromStr>() -> T { let mut s = String::new(); std::io::stdin().read_line(&mut s).ok(); s.trim().parse().ok().unwrap() } fn read_vec<T: std::str::FromStr>() -> Vec<T> { read::<String>() .split_whitespace() .map(|e| e.parse().ok().unwrap()) .collect() } #[macro_export] macro_rules! max { ($x: expr) => ($x); ($x: expr, $( $y: expr ),+) => { std::cmp::max($x, max!($( $y ),+)) } } #[macro_export] macro_rules! min { ($x: expr) => ($x); ($x: expr, $( $y: expr ),+) => { std::cmp::min($x, min!($( $y ),+)) } } #[derive(Debug, Clone)] struct UnionFind { parent: Vec<isize>, size: usize, } impl UnionFind { fn new(n: usize) -> Self { UnionFind { parent: vec![-1; n], size: n, } } fn find(&mut self, x: usize) -> usize { if self.parent[x] < 0 { return x; } let root = self.find(self.parent[x] as usize); self.parent[x] = root as isize; root } fn unite(&mut self, x: usize, y: usize) -> Option<(usize, usize)> { let root_x = self.find(x); let root_y = self.find(y); if root_x == root_y { return None; } let size_x = -self.parent[root_x]; let size_y = -self.parent[root_y]; self.size -= 1; if size_x >= size_y { self.parent[root_x] -= size_y; self.parent[root_y] = root_x as isize; Some((root_x, root_y)) } else { self.parent[root_y] -= size_x; self.parent[root_x] = root_y as isize; Some((root_y, root_x)) } } fn is_same(&mut self, x: usize, y: usize) -> bool { self.find(x) == self.find(y) } fn is_root(&mut self, x: usize) -> bool { self.find(x) == x } fn get_union_size(&mut self, x: usize) -> usize { let root = self.find(x); -self.parent[root] as usize } fn get_size(&self) -> usize { self.size } fn roots(&self) -> Vec<usize> { (0..self.parent.len()) .filter(|i| self.parent[*i] < 0) .collect::<Vec<usize>>() } fn members(&mut self, x: usize) -> Vec<usize> { let root = self.find(x); (0..self.parent.len()) .filter(|i| self.find(*i) == root) .collect::<Vec<usize>>() } fn all_group_members(&mut self) -> BTreeMap<usize, Vec<usize>> { let mut groups_map: BTreeMap<usize, Vec<usize>> = BTreeMap::new(); for x in 0..self.parent.len() { let r = self.find(x); groups_map.entry(r).or_default().push(x); } groups_map } } #[derive(Debug, Clone)] struct WeightedUnionFind { parent: Vec<isize>, size: usize, diff_weight: Vec<isize>, } impl WeightedUnionFind { fn new(n: usize) -> Self { WeightedUnionFind { parent: vec![-1; n], size: n, diff_weight: vec![0_isize; n], } } fn find(&mut self, x: usize) -> usize { if self.parent[x] < 0 { return x; } let root = self.find(self.parent[x] as usize); self.diff_weight[x] += self.diff_weight[self.parent[x] as usize]; self.parent[x] = root as isize; root } fn weight(&mut self, x: usize) -> isize { self.find(x); self.diff_weight[x] } fn unite(&mut self, x: usize, y: usize, w: isize) -> Option<(usize, usize)> { let root_x = self.find(x); let root_y = self.find(y); if root_x == root_y { return None; } let adjusted_w = w + self.weight(x) - self.weight(y); let size_x = -self.parent[root_x]; let size_y = -self.parent[root_y]; self.size -= 1; if size_x >= size_y { self.diff_weight[root_y] = adjusted_w; self.parent[root_x] -= size_y; self.parent[root_y] = root_x as isize; Some((root_x, root_y)) } else { self.diff_weight[root_x] = -adjusted_w; self.parent[root_y] -= size_x; self.parent[root_x] = root_y as isize; Some((root_y, root_x)) } } fn is_same(&mut self, x: usize, y: usize) -> bool { self.find(x) == self.find(y) } fn is_root(&mut self, x: usize) -> bool { self.find(x) == x } fn diff(&mut self, x: usize, y: usize) -> isize { self.weight(y) - self.weight(x) } fn get_union_size(&mut self, x: usize) -> usize { let root = self.find(x); -self.parent[root] as usize } fn get_size(&self) -> usize { self.size } fn roots(&self) -> Vec<usize> { (0..self.parent.len()) .filter(|i| self.parent[*i] < 0) .collect::<Vec<usize>>() } fn members(&mut self, x: usize) -> Vec<usize> { let root = self.find(x); (0..self.parent.len()) .filter(|i| self.find(*i) == root) .collect::<Vec<usize>>() } fn all_group_members(&mut self) -> BTreeMap<usize, Vec<usize>> { let mut groups_map: BTreeMap<usize, Vec<usize>> = BTreeMap::new(); for x in 0..self.parent.len() { let r = self.find(x); groups_map.entry(r).or_default().push(x); } groups_map } } type M = ModInt; #[derive(Debug, Clone, Copy, Default)] struct ModInt { value: usize, } impl ModInt { fn new(n: usize) -> Self { ModInt { value: n % MOD } } fn zero() -> Self { ModInt { value: 0 } } fn one() -> Self { ModInt { value: 1 } } fn value(&self) -> usize { self.value } fn pow(&self, n: usize) -> Self { let mut p = *self; let mut ret = ModInt::one(); let mut nn = n; while nn > 0 { if nn & 1 == 1 { ret *= p; } p *= p; nn >>= 1; } ret } fn inv(&self) -> Self { ModInt::new((ext_gcd(self.value, MOD).0 + MOD as isize) as usize) } } impl std::ops::Add for ModInt { type Output = ModInt; fn add(self, other: Self) -> Self { ModInt::new(self.value + other.value) } } impl std::ops::Sub for ModInt { type Output = ModInt; fn sub(self, other: Self) -> Self { ModInt::new(MOD + self.value - other.value) } } impl std::ops::Mul for ModInt { type Output = ModInt; fn mul(self, other: Self) -> Self { ModInt::new(self.value * other.value) } } #[allow(clippy::suspicious_arithmetic_impl)] impl std::ops::Div for ModInt { type Output = ModInt; fn div(self, other: Self) -> Self { self * other.inv() } } impl std::ops::AddAssign for ModInt { fn add_assign(&mut self, other: Self) { *self = *self + other; } } impl std::ops::SubAssign for ModInt { fn sub_assign(&mut self, other: Self) { *self = *self - other; } } impl std::ops::MulAssign for ModInt { fn mul_assign(&mut self, other: Self) { *self = *self * other; } } impl std::ops::DivAssign for ModInt { fn div_assign(&mut self, other: Self) { *self = *self / other; } } #[derive(Debug, Clone)] struct Comb { fact: Vec<ModInt>, fact_inverse: Vec<ModInt>, } impl Comb { fn new(n: usize) -> Self { let mut fact = vec![M::one(), M::one()]; let mut fact_inverse = vec![M::one(), M::one()]; let mut inverse = vec![M::zero(), M::one()]; for i in 2..=n { fact.push(*fact.last().unwrap() * M::new(i)); inverse.push((M::zero() - inverse[MOD % i]) * M::new(MOD / i)); fact_inverse.push(*fact_inverse.last().unwrap() * *inverse.last().unwrap()); } Comb { fact, fact_inverse } } fn nCr(&self, n: usize, r: usize) -> ModInt { self.fact[n] * self.fact_inverse[n - r] * self.fact_inverse[r] } fn nHr(&self, n: usize, r: usize) -> ModInt { self.nCr(n + r - 1, r) } } trait ArgOrd<T> { fn argmax(&self) -> Option<usize>; fn argmin(&self) -> Option<usize>; } impl<T: Ord> ArgOrd<T> for [T] { fn argmax(&self) -> Option<usize> { (0..self.len()).max_by_key(|&i| &self[i]) } fn argmin(&self) -> Option<usize> { (0..self.len()).min_by_key(|&i| &self[i]) } } #[derive(Default)] struct Solver {} impl Solver { fn solve(&mut self) { let v: Vec<usize> = read_vec(); let W = v[0]; let H = v[1]; // let S = read::<String>().chars().collect::<Vec<char>>(); let mut uf = UnionFind::new(W); let mut roots = BTreeSet::new(); let mut fixed = vec![-1; W]; for i in 0..W { roots.insert(i); } let mut ng = false; let mut fixed_num = 0_usize; for _ in 0..H { let Q = read::<String>().chars().collect::<Vec<char>>(); let mut mp = vec![vec![]; 26]; for (i, &q) in Q.iter().enumerate() { if ng { break; } if b'a' <= q as u8 && q as u8 <= b'z' { let num = (q as u8 - b'a') as usize; mp[num].push(i); } else if b'0' <= q as u8 && q as u8 <= b'9' { let num = (q as u8 - b'0') as isize; let r = uf.find(i); if fixed[r] != -1 && num != fixed[r] { ng = true; } else { if fixed[r] == -1 { fixed_num += 1; } fixed[r] = num; } } } for i in 0..26 { if mp[i].len() > 1 { for v in mp[i].windows(2) { let x = v[0]; let y = v[1]; if !uf.is_same(x, y) { let rx0 = uf.find(x); let ry0 = uf.find(y); uf.unite(x, y); let rx1 = uf.find(x); if rx0 == rx1 { roots.remove(&ry0); if fixed[rx0] != -1 && fixed[ry0] != -1 && fixed[rx0] == fixed[ry0] { fixed_num -= 1; } else if fixed[rx0] != -1 && fixed[ry0] != -1 && fixed[rx0] != fixed[ry0] { ng = true; } else if fixed[rx0] == -1 { fixed[rx0] = fixed[ry0]; } } else { roots.remove(&rx0); if fixed[rx0] != -1 && fixed[ry0] != -1 && fixed[rx0] == fixed[ry0] { fixed_num -= 1; } else if fixed[rx0] != -1 && fixed[ry0] != -1 && fixed[rx0] != fixed[ry0] { ng = true; } else if fixed[ry0] == -1 { fixed[ry0] = fixed[rx0]; } } } } } } if ng { println!("0"); } else { let ans = M::new(10).pow(roots.len() - fixed_num); println!("{}", ans.value()); } } } } fn main() { std::thread::Builder::new() .stack_size(128 * 1024 * 1024) .spawn(|| Solver::default().solve()) .unwrap() .join() .unwrap(); } fn eratosthenes(n: usize) -> Vec<bool> { let mut is_prime_list = vec![true; n + 1]; is_prime_list[0] = false; is_prime_list[1] = false; let mut i = 2; while i * i <= n { if is_prime_list[i] { let mut j = i * i; while j <= n { is_prime_list[j] = false; j += i; } } i += 1 } is_prime_list } fn legendre(n: usize, p: usize) -> usize { let mut cnt = 0_usize; let mut pp = p; while pp <= n { cnt += n / pp; pp *= p; } cnt } fn mod_pow(a: usize, b: usize) -> usize { let mut p = a; let mut ret = 1; let mut n = b; while n > 0 { if n & 1 == 1 { ret = ret * p % MOD; } p = p * p % MOD; n >>= 1; } ret } fn mod_pow2(a: usize, b: usize, m: usize) -> usize { let mut p = a; let mut ret = 1; let mut n = b; while n > 0 { if n & 1 == 1 { ret = ret * p % m; } p = p * p % m; n >>= 1; } ret } fn mod_inv(a: usize, b: usize) -> usize { (a * mod_pow(b, MOD - 2)) % MOD } fn prime_factorize(n: usize) -> BTreeMap<usize, usize> { let mut nn = n; let mut i = 2; let mut pf: BTreeMap<usize, usize> = BTreeMap::new(); while i * i <= n { while nn % i == 0 { *pf.entry(i).or_default() += 1; nn /= i; } i += 1; } if nn != 1 { *pf.entry(nn).or_default() += 1; } pf } fn enum_dividers(n: usize) -> Vec<usize> { let mut i = 1_usize; let mut ret = vec![]; while i * i <= n { if n % i == 0 { ret.push(i); if i != n / i { ret.push(n / i); } } i += 1; } ret.sort(); ret } // ax+by=gcd(a, b) fn ext_gcd(a: usize, b: usize) -> (isize, isize, usize) { if a == 0 { return (0, 1, b); } let (x, y, g) = ext_gcd(b % a, a); (y - b as isize / a as isize * x, x, g) } fn mod_inv2(x: usize) -> usize { (ext_gcd(x, MOD).0 + MOD as isize) as usize % MOD } fn coordinate_compression<T: std::cmp::Ord + Copy>(v: Vec<T>) -> BTreeMap<T, usize> { let mut vv = v; vv.sort(); vv.dedup(); let ret = vv.iter().enumerate().map(|(i, &s)| (s, i)).collect(); ret } fn transpose_vec<T>(v: Vec<Vec<T>>) -> Vec<Vec<T>> { assert!(!v.is_empty()); let N = v[0].len(); let mut iters: Vec<_> = v.into_iter().map(|n| n.into_iter()).collect(); (0..N) .map(|_| { iters .iter_mut() .map(|n| n.next().unwrap()) .collect::<Vec<T>>() }) .collect() } fn transpose_vec_deque<T>(v: VecDeque<VecDeque<T>>) -> VecDeque<VecDeque<T>> { assert!(!v.is_empty()); let N = v[0].len(); let mut iters: VecDeque<_> = v.into_iter().map(|n| n.into_iter()).collect(); (0..N) .map(|_| { iters .iter_mut() .map(|n| n.next().unwrap()) .collect::<VecDeque<T>>() }) .collect() } fn run_length_encoding<T: Eq>(v: Vec<T>) -> Vec<(T, usize)> { let mut v = v.into_iter().map(|v| (v, 1)).collect::<Vec<_>>(); v.dedup_by(|a, b| { a.0 == b.0 && { b.1 += a.1; true } }); v }