結果
問題 | No.399 動的な領主 |
ユーザー | titan23 |
提出日時 | 2023-05-06 13:43:25 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 9,001 bytes |
コンパイル時間 | 258 ms |
コンパイル使用メモリ | 81,920 KB |
実行使用メモリ | 203,852 KB |
最終ジャッジ日時 | 2024-11-23 21:45:30 |
合計ジャッジ時間 | 38,152 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 81 ms
74,112 KB |
testcase_01 | AC | 77 ms
161,880 KB |
testcase_02 | AC | 150 ms
83,328 KB |
testcase_03 | AC | 154 ms
174,908 KB |
testcase_04 | AC | 516 ms
87,636 KB |
testcase_05 | TLE | - |
testcase_06 | TLE | - |
testcase_07 | TLE | - |
testcase_08 | TLE | - |
testcase_09 | TLE | - |
testcase_10 | AC | 779 ms
92,744 KB |
testcase_11 | AC | 1,596 ms
183,788 KB |
testcase_12 | TLE | - |
testcase_13 | TLE | - |
testcase_14 | AC | 680 ms
92,288 KB |
testcase_15 | TLE | - |
testcase_16 | TLE | - |
testcase_17 | TLE | - |
testcase_18 | TLE | - |
ソースコード
from array import array from typing import Generic, List, TypeVar, Callable, Iterable, Optional, Union T = TypeVar('T') F = TypeVar('F') class LinkCutTree(Generic[T, F]): # パスクエリ全部載せLinkCutTree # - link / cut / merge / split # - prod / apply / getitem / setitem # - root / same # - lca / path_kth_elm # など # opがいらないならupdateを即returnするように変更したり、 # 可換opならupdateを短縮したりなど # opをするならeは必須 <- 場合分けしてもよさそう? # idは無くてもよいが、あると(strategyの問題で)速くなるため推奨 def __init__(self, n_or_a: Union[int, Iterable[T]], \ op: Callable[[T, T], T]=lambda x, y: None, \ mapping: Callable[[F, T], T]=lambda x, y: None, \ composition: Callable[[F, F], F]=lambda x, y: None, \ e: T=None, id: F=None): # self.op = op # self.mapping = mapping # self.composition = composition # self.e = e # self.id = id self.key: List[T] = list(n_or_a) self.n = len(self.key) self.key.append(0) self.data : List[T] = self.key[:] self.lazy : List[F] = [0] * (self.n+1) self.arr : array[int] = array('I', [self.n, self.n, self.n, 0] * (self.n+1)) # node.left : arr[node<<2|0] # node.right : arr[node<<2|1] # node.par : arr[node<<2|2] # node.rev : arr[node<<2|3] self.size : array[int] = array('I', [1] * (self.n+1)) self.size[-1] = 0 self.group_cnt = self.n def _is_root(self, node: int) -> bool: return (self.arr[node<<2|2] == self.n) or not (self.arr[self.arr[node<<2|2]<<2] == node or self.arr[self.arr[node<<2|2]<<2|1] == node) def _propagate(self, node: int) -> None: if node == self.n: return arr = self.arr if arr[node<<2|3]: arr[node<<2|3] = 0 ln, rn = arr[node<<2], arr[node<<2|1] arr[node<<2] = rn arr[node<<2|1] = ln arr[ln<<2|3] ^= 1 arr[rn<<2|3] ^= 1 lazy, data, key, size = self.lazy, self.data, self.key, self.size nlazy = lazy[node] lnode, rnode = arr[node<<2], arr[node<<2|1] if lnode != self.n: data[lnode] += nlazy * size[lnode] key[lnode] += nlazy lazy[lnode] += nlazy if rnode != self.n: data[rnode] += nlazy * size[rnode] key[rnode] += nlazy lazy[rnode] += nlazy lazy[node] = 0 def _update(self, node: int) -> None: if node == self.n: return ln, rn = self.arr[node<<2], self.arr[node<<2|1] self._propagate(ln) self._propagate(rn) self.data[node] = self.data[ln] + self.key[node] + self.data[rn] self.size[node] = 1 + self.size[ln] + self.size[rn] def _update_triple(self, x: int, y: int, z: int) -> None: self._update(x) self._update(y) self._update(z) return data, key, arr, size = self.data, self.key, self.arr, self.size lx, rx = arr[x<<2], arr[x<<2|1] ly, ry = arr[y<<2], arr[y<<2|1] self._propagate(lx) self._propagate(rx) self._propagate(ly) self._propagate(ry) data[z] = data[x] data[x] = data[lx] + key[x] + data[rx] data[y] = data[ly] + key[y] + data[ry] size[z] = size[x] size[x] = 1 + size[lx] + size[rx] size[y] = 1 + size[ly] + size[ry] def _update_double(self, x: int, y: int) -> None: data, key, arr, size = self.data, self.key, self.arr, self.size lx, rx = arr[x<<2], arr[x<<2|1] self._propagate(lx) self._propagate(rx) data[y] = data[x] data[x] = data[lx] + key[x] + data[rx] size[y] = size[x] size[x] = 1 + size[lx] + size[rx] def _splay(self, node: int) -> None: # splayを抜けた後、nodeは遅延伝播済みにするようにする # (splay後のnodeのleft,rightにアクセスしやすいと非常にラクなはず) if node == self.n: return _propagate, _is_root, _update_triple = self._propagate, self._is_root, self._update_triple _propagate(node) if _is_root(node): return n, arr = self.n, self.arr pnode = arr[node<<2|2] while not _is_root(pnode): gnode = arr[pnode<<2|2] _propagate(gnode) _propagate(pnode) _propagate(node) f = arr[pnode<<2] == node g = (arr[gnode<<2|f] == pnode) ^ (arr[pnode<<2|f] == node) nnode = (node if g else pnode) << 2 | f ^ g arr[pnode<<2|f^1] = arr[node<<2|f] arr[gnode<<2|f^g^1] = arr[nnode] arr[node<<2|f] = pnode arr[nnode] = gnode arr[node<<2|2] = arr[gnode<<2|2] arr[gnode<<2|2] = nnode>>2 arr[arr[pnode<<2|f^1]<<2|2] = pnode arr[arr[gnode<<2|f^g^1]<<2|2] = gnode arr[pnode<<2|2] = node _update_triple(gnode, pnode, node) pnode = arr[node<<2|2] if arr[pnode<<2] == gnode: arr[pnode<<2] = node elif arr[pnode<<2|1] == gnode: arr[pnode<<2|1] = node else: return _propagate(pnode) _propagate(node) f = arr[pnode<<2] == node arr[pnode<<2|f^1] = arr[node<<2|f] arr[node<<2|f] = pnode arr[arr[pnode<<2|f^1]<<2|2] = pnode arr[node<<2|2] = arr[pnode<<2|2] arr[pnode<<2|2] = node self._update_double(pnode, node) def expose(self, v: int) -> int: ''' vが属する木において、その木の根->vのパスを構築 ''' arr, n, _splay, _update = self.arr, self.n, self._splay, self._update pre = v while arr[v<<2|2] != n: _splay(v) arr[v<<2|1] = n _update(v) if arr[v<<2|2] == n: break pre = arr[v<<2|2] _splay(pre) arr[pre<<2|1] = v _update(pre) arr[v<<2|1] = n _update(v) return pre def lca(self, root: int, u: int, v: int) -> int: self.evert(root) self.expose(u) return self.expose(v) def link(self, c: int, p: int) -> None: ''' c->pの辺を追加する / cは元の木の根でなければならない (元の木の根とself._is_root()はまったくの別物) ''' assert not self.same(c, p) self.expose(c) self.expose(p) self.arr[c<<2|2] = p self.arr[p<<2|1] = c self._update(p) self.group_cnt -= 1 def cut(self, c: int) -> None: ''' cとpar[c]の間の辺を削除する / cは元の木の根であってはいけない ''' arr = self.arr self.expose(c) assert arr[c<<2] != self.n arr[arr[c<<2]<<2|2] = self.n arr[c<<2] = self.n self._update(c) self.group_cnt += 1 def group_count(self) -> int: return self.group_cnt def root(self, v: int) -> int: ''' vが属する木の根を返す ''' self.expose(v) arr, n = self.arr, self.n while arr[v<<2] != n: v = arr[v<<2] self._propagate(v) self._splay(v) return v def same(self, u: int, v: int) -> bool: ''' uとvが同じ連結成分であるかを返す ''' return self.root(u) == self.root(v) def evert(self, v: int) -> None: ''' vが属する元の木の根をvにする expose→一番右→反転フラグ evert後、vは遅延伝播済み(何かと便利なので) ''' self.expose(v) self.arr[v<<2|3] ^= 1 self._propagate(v) def prod(self, u: int, v: int) -> T: ''' パス[u -> v]間の総積を返す 非可換に対応 ''' self.evert(u) self.expose(v) return self.data[v] def apply(self, u: int, v: int, f: F) -> None: self.evert(u) self.expose(v) self.key[v] += f self.data[v] += f * self.size[v] self.lazy[v] += f self._propagate(v) def merge(self, u: int, v: int) -> bool: ''' 辺[u - v]を追加する ''' self.evert(u) self.expose(v) self.arr[u<<2|2] = v self.arr[v<<2|1] = u self._update(v) self.group_cnt -= 1 return True def split(self, u: int, v: int) -> bool: ''' 辺[u - v]を削除する ''' if not self.same(v, u): return False self.evert(u) self.cut(v) return True def path_kth_elm(self, s: int, t: int, k: int) -> Optional[int]: ''' path[s -> t]のk番目を取得する ''' self.evert(s) self.expose(t) if self.size[t] <= k: return None size, arr = self.size, self.arr while True: self._propagate(t) s = size[arr[t<<2]] if s == k: self._splay(t) return t t = arr[t<<2|(s<k)] if s < k: k -= s + 1 def __setitem__(self, k: int, v: T): self._splay(k) self.key[k] = v self._update(k) def __getitem__(self, k: int) -> T: self._splay(k) return self.key[k] def __str__(self): # 後でやる return 'LinkCutTree()' def __repr__(self): # 後でやる return 'LinkCutTree()' import sys input = lambda: sys.stdin.buffer.readline().rstrip() # ----------------------- # n = int(input()) lct = LinkCutTree([1]*n) for _ in range(n-1): u, v = map(int, input().split()) u -= 1 v -= 1 lct.merge(u, v) ans = 0 q = int(input()) for _ in range(q): a, b = map(int, input().split()) a -= 1 b -= 1 ans += lct.prod(a, b) lct.apply(a, b, 1) print(ans)