結果
| 問題 |
No.399 動的な領主
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-05-06 13:43:25 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 9,001 bytes |
| コンパイル時間 | 258 ms |
| コンパイル使用メモリ | 81,920 KB |
| 実行使用メモリ | 203,852 KB |
| 最終ジャッジ日時 | 2024-11-23 21:45:30 |
| 合計ジャッジ時間 | 38,152 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 8 TLE * 11 |
ソースコード
from array import array
from typing import Generic, List, TypeVar, Callable, Iterable, Optional, Union
T = TypeVar('T')
F = TypeVar('F')
class LinkCutTree(Generic[T, F]):
# パスクエリ全部載せLinkCutTree
# - link / cut / merge / split
# - prod / apply / getitem / setitem
# - root / same
# - lca / path_kth_elm
# など
# opがいらないならupdateを即returnするように変更したり、
# 可換opならupdateを短縮したりなど
# opをするならeは必須 <- 場合分けしてもよさそう?
# idは無くてもよいが、あると(strategyの問題で)速くなるため推奨
def __init__(self, n_or_a: Union[int, Iterable[T]], \
op: Callable[[T, T], T]=lambda x, y: None, \
mapping: Callable[[F, T], T]=lambda x, y: None, \
composition: Callable[[F, F], F]=lambda x, y: None, \
e: T=None, id: F=None):
# self.op = op
# self.mapping = mapping
# self.composition = composition
# self.e = e
# self.id = id
self.key: List[T] = list(n_or_a)
self.n = len(self.key)
self.key.append(0)
self.data : List[T] = self.key[:]
self.lazy : List[F] = [0] * (self.n+1)
self.arr : array[int] = array('I', [self.n, self.n, self.n, 0] * (self.n+1))
# node.left : arr[node<<2|0]
# node.right : arr[node<<2|1]
# node.par : arr[node<<2|2]
# node.rev : arr[node<<2|3]
self.size : array[int] = array('I', [1] * (self.n+1))
self.size[-1] = 0
self.group_cnt = self.n
def _is_root(self, node: int) -> bool:
return (self.arr[node<<2|2] == self.n) or not (self.arr[self.arr[node<<2|2]<<2] == node or self.arr[self.arr[node<<2|2]<<2|1] == node)
def _propagate(self, node: int) -> None:
if node == self.n: return
arr = self.arr
if arr[node<<2|3]:
arr[node<<2|3] = 0
ln, rn = arr[node<<2], arr[node<<2|1]
arr[node<<2] = rn
arr[node<<2|1] = ln
arr[ln<<2|3] ^= 1
arr[rn<<2|3] ^= 1
lazy, data, key, size = self.lazy, self.data, self.key, self.size
nlazy = lazy[node]
lnode, rnode = arr[node<<2], arr[node<<2|1]
if lnode != self.n:
data[lnode] += nlazy * size[lnode]
key[lnode] += nlazy
lazy[lnode] += nlazy
if rnode != self.n:
data[rnode] += nlazy * size[rnode]
key[rnode] += nlazy
lazy[rnode] += nlazy
lazy[node] = 0
def _update(self, node: int) -> None:
if node == self.n: return
ln, rn = self.arr[node<<2], self.arr[node<<2|1]
self._propagate(ln)
self._propagate(rn)
self.data[node] = self.data[ln] + self.key[node] + self.data[rn]
self.size[node] = 1 + self.size[ln] + self.size[rn]
def _update_triple(self, x: int, y: int, z: int) -> None:
self._update(x)
self._update(y)
self._update(z)
return
data, key, arr, size = self.data, self.key, self.arr, self.size
lx, rx = arr[x<<2], arr[x<<2|1]
ly, ry = arr[y<<2], arr[y<<2|1]
self._propagate(lx)
self._propagate(rx)
self._propagate(ly)
self._propagate(ry)
data[z] = data[x]
data[x] = data[lx] + key[x] + data[rx]
data[y] = data[ly] + key[y] + data[ry]
size[z] = size[x]
size[x] = 1 + size[lx] + size[rx]
size[y] = 1 + size[ly] + size[ry]
def _update_double(self, x: int, y: int) -> None:
data, key, arr, size = self.data, self.key, self.arr, self.size
lx, rx = arr[x<<2], arr[x<<2|1]
self._propagate(lx)
self._propagate(rx)
data[y] = data[x]
data[x] = data[lx] + key[x] + data[rx]
size[y] = size[x]
size[x] = 1 + size[lx] + size[rx]
def _splay(self, node: int) -> None:
# splayを抜けた後、nodeは遅延伝播済みにするようにする
# (splay後のnodeのleft,rightにアクセスしやすいと非常にラクなはず)
if node == self.n: return
_propagate, _is_root, _update_triple = self._propagate, self._is_root, self._update_triple
_propagate(node)
if _is_root(node): return
n, arr = self.n, self.arr
pnode = arr[node<<2|2]
while not _is_root(pnode):
gnode = arr[pnode<<2|2]
_propagate(gnode)
_propagate(pnode)
_propagate(node)
f = arr[pnode<<2] == node
g = (arr[gnode<<2|f] == pnode) ^ (arr[pnode<<2|f] == node)
nnode = (node if g else pnode) << 2 | f ^ g
arr[pnode<<2|f^1] = arr[node<<2|f]
arr[gnode<<2|f^g^1] = arr[nnode]
arr[node<<2|f] = pnode
arr[nnode] = gnode
arr[node<<2|2] = arr[gnode<<2|2]
arr[gnode<<2|2] = nnode>>2
arr[arr[pnode<<2|f^1]<<2|2] = pnode
arr[arr[gnode<<2|f^g^1]<<2|2] = gnode
arr[pnode<<2|2] = node
_update_triple(gnode, pnode, node)
pnode = arr[node<<2|2]
if arr[pnode<<2] == gnode:
arr[pnode<<2] = node
elif arr[pnode<<2|1] == gnode:
arr[pnode<<2|1] = node
else:
return
_propagate(pnode)
_propagate(node)
f = arr[pnode<<2] == node
arr[pnode<<2|f^1] = arr[node<<2|f]
arr[node<<2|f] = pnode
arr[arr[pnode<<2|f^1]<<2|2] = pnode
arr[node<<2|2] = arr[pnode<<2|2]
arr[pnode<<2|2] = node
self._update_double(pnode, node)
def expose(self, v: int) -> int:
''' vが属する木において、その木の根->vのパスを構築
'''
arr, n, _splay, _update = self.arr, self.n, self._splay, self._update
pre = v
while arr[v<<2|2] != n:
_splay(v)
arr[v<<2|1] = n
_update(v)
if arr[v<<2|2] == n:
break
pre = arr[v<<2|2]
_splay(pre)
arr[pre<<2|1] = v
_update(pre)
arr[v<<2|1] = n
_update(v)
return pre
def lca(self, root: int, u: int, v: int) -> int:
self.evert(root)
self.expose(u)
return self.expose(v)
def link(self, c: int, p: int) -> None:
''' c->pの辺を追加する / cは元の木の根でなければならない
(元の木の根とself._is_root()はまったくの別物)
'''
assert not self.same(c, p)
self.expose(c)
self.expose(p)
self.arr[c<<2|2] = p
self.arr[p<<2|1] = c
self._update(p)
self.group_cnt -= 1
def cut(self, c: int) -> None:
''' cとpar[c]の間の辺を削除する / cは元の木の根であってはいけない
'''
arr = self.arr
self.expose(c)
assert arr[c<<2] != self.n
arr[arr[c<<2]<<2|2] = self.n
arr[c<<2] = self.n
self._update(c)
self.group_cnt += 1
def group_count(self) -> int:
return self.group_cnt
def root(self, v: int) -> int:
''' vが属する木の根を返す
'''
self.expose(v)
arr, n = self.arr, self.n
while arr[v<<2] != n:
v = arr[v<<2]
self._propagate(v)
self._splay(v)
return v
def same(self, u: int, v: int) -> bool:
''' uとvが同じ連結成分であるかを返す
'''
return self.root(u) == self.root(v)
def evert(self, v: int) -> None:
''' vが属する元の木の根をvにする
expose→一番右→反転フラグ
evert後、vは遅延伝播済み(何かと便利なので)
'''
self.expose(v)
self.arr[v<<2|3] ^= 1
self._propagate(v)
def prod(self, u: int, v: int) -> T:
''' パス[u -> v]間の総積を返す
非可換に対応
'''
self.evert(u)
self.expose(v)
return self.data[v]
def apply(self, u: int, v: int, f: F) -> None:
self.evert(u)
self.expose(v)
self.key[v] += f
self.data[v] += f * self.size[v]
self.lazy[v] += f
self._propagate(v)
def merge(self, u: int, v: int) -> bool:
''' 辺[u - v]を追加する
'''
self.evert(u)
self.expose(v)
self.arr[u<<2|2] = v
self.arr[v<<2|1] = u
self._update(v)
self.group_cnt -= 1
return True
def split(self, u: int, v: int) -> bool:
''' 辺[u - v]を削除する
'''
if not self.same(v, u): return False
self.evert(u)
self.cut(v)
return True
def path_kth_elm(self, s: int, t: int, k: int) -> Optional[int]:
''' path[s -> t]のk番目を取得する
'''
self.evert(s)
self.expose(t)
if self.size[t] <= k:
return None
size, arr = self.size, self.arr
while True:
self._propagate(t)
s = size[arr[t<<2]]
if s == k:
self._splay(t)
return t
t = arr[t<<2|(s<k)]
if s < k:
k -= s + 1
def __setitem__(self, k: int, v: T):
self._splay(k)
self.key[k] = v
self._update(k)
def __getitem__(self, k: int) -> T:
self._splay(k)
return self.key[k]
def __str__(self):
# 後でやる
return 'LinkCutTree()'
def __repr__(self):
# 後でやる
return 'LinkCutTree()'
import sys
input = lambda: sys.stdin.buffer.readline().rstrip()
# ----------------------- #
n = int(input())
lct = LinkCutTree([1]*n)
for _ in range(n-1):
u, v = map(int, input().split())
u -= 1
v -= 1
lct.merge(u, v)
ans = 0
q = int(input())
for _ in range(q):
a, b = map(int, input().split())
a -= 1
b -= 1
ans += lct.prod(a, b)
lct.apply(a, b, 1)
print(ans)