結果
| 問題 |
No.2308 [Cherry 5th Tune B] もしかして、真?
|
| コンテスト | |
| ユーザー |
👑 |
| 提出日時 | 2023-05-06 17:10:18 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 8,676 bytes |
| コンパイル時間 | 3,049 ms |
| コンパイル使用メモリ | 106,108 KB |
| 最終ジャッジ日時 | 2025-02-12 20:35:11 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 15 WA * 24 |
ソースコード
#pragma GCC optimize ( "O3" )
#pragma GCC optimize( "unroll-loops" )
#pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
#include <iostream>
#include <stdio.h>
#include <stdint.h>
#include <cassert>
#include <vector>
using namespace std;
using ll = long long;
using uint = unsigned int;
#define TYPE_OF( VAR ) remove_const<remove_reference<decltype( VAR )>::type >::type
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define CEXPR( LL , BOUND , VALUE ) constexpr const LL BOUND = VALUE
#define CIN( LL , A ) LL A; cin >> A
#define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) )
#define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX )
#define GETLINE( S ) string S; getline( cin , S )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES )
#define QUIT return 0
#define COUT( ANSWER ) cout << ( ANSWER ) << "\n"
// InitialSegmentSumで負の入力を扱うためにuintではなくintをテンプレート引数にする。
// 使用演算:
// T& T::operator=( const T& )
// T& T::operator+=( const T& )
// T operator-( const T& , const T& )(ただしIntervalSumを用いない場合は不要)
// T operator<( const T& , const T& )(ただしBinarySearchを用いない場合は不要)
template <typename T>
class BIT
{
private:
int m_N;
vector<T> m_fenwick;
int m_power;
public:
inline BIT( const uint& N );
inline void Set( const int& i , const T& n );
void Add( const int& i , const T& n );
T InitialSegmentSum( const int& i_final ) const;
inline T IntervalSum( const int& i_start , const int& i_final ) const;
// operator+=の単位元T()より小さくない要素のみを成分に持つ場合のみサポート。
// InitialSegmentSum( i )がt以上となるiが存在する場合にその最小値を2進法で探索。
int BinarySearch( const T& t ) const;
};
template <typename T> inline BIT<T>::BIT( const uint& N ) : m_N( N ) , m_fenwick( N + 1 ) , m_power( 1 )
{
// 1で初期化
for( int j = 1 ; j <= N ; j++ ){
T& fenwick_j = m_fenwick[j] = 1;
int i = j - 1;
int i_lim = j - ( j & -j );
while( i != i_lim ){
fenwick_j += m_fenwick[i];
i -= ( i & -i );
}
}
while( m_power < N ){
m_power <<= 1;
}
}
template <typename T> inline void BIT<T>::Set( const int& i , const T& n ) { Add( i , n - IntervalSum( i , i ) ); }
template <typename T>
void BIT<T>::Add( const int& i , const T& n )
{
int j = i + 1;
while( j <= m_N ){
m_fenwick[j] += n;
j += ( j & -j );
}
return;
}
template <typename T>
T BIT<T>::InitialSegmentSum( const int& i_final ) const
{
T sum = 0;
int j = ( i_final < m_N ? i_final : m_N - 1 ) + 1;
while( j > 0 ){
sum += m_fenwick[j];
j -= j & -j;
}
return sum;
}
template <typename T> inline T BIT<T>::IntervalSum( const int& i_start , const int& i_final ) const { return InitialSegmentSum( i_final ) - InitialSegmentSum( i_start - 1 ); }
template <typename T> inline int BIT<T>::BinarySearch( const T& t ) const
{
int j = 0;
int power = m_power;
T sum{};
T sum_next{};
while( power > 0 ){
int j_next = j | power;
if( j_next < m_N ){
sum_next += m_fenwick[j_next];
if( sum_next < t ){
sum = sum_next;
j = j_next;
} else {
sum_next = sum;
}
}
power >>= 1;
}
// InitialSegmentSum( i )がt未満となるiが存在するならばjはその最大値に1を足したものとなり、
// InitialSegmentSum( i )がt未満となるiが存在しないならばj=0となり、
// いずれの場合もjはInitialSegmentSum( i )がt以上となる最小のiと等しい。
return j;
}
// 入力フォーマットチェック用
// 1行中の変数の個数を確認
#define GETLINE_COUNT( S , VARIABLE_NUMBER ) GETLINE( S ); int VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S = 0; int VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S = S.size(); { int size = S.size(); int count = 0; for( int i = 0 ; i < size ; i++ ){ if( S.substr( i , 1 ) == " " ){ count++; } } assert( count + 1 == VARIABLE_NUMBER ); }
// 余計な入力の有無を確認
#define CHECK_REDUNDANT_INPUT string VARIABLE_FOR_CHECK_REDUNDANT_INPUT = ""; cin >> VARIABLE_FOR_CHECK_REDUNDANT_INPUT; assert( VARIABLE_FOR_CHECK_REDUNDANT_INPUT == "" ); assert( ! cin )
// #define CHECK_REDUNDANT_INPUT string VARIABLE_FOR_CHECK_REDUNDANT_INPUT = ""; getline( cin , VARIABLE_FOR_CHECK_REDUNDANT_INPUT ); assert( VARIABLE_FOR_CHECK_REDUNDANT_INPUT == "" ); assert( ! cin )
// |N| <= BOUNDを満たすNをSから構築
#define STOI( S , N , BOUND ) TYPE_OF( BOUND ) N = 0; { bool VARIABLE_FOR_POSITIVITY_FOR_GETLINE = true; assert( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ); if( S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) == "-" ){ VARIABLE_FOR_POSITIVITY_FOR_GETLINE = false; VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; assert( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ); } assert( S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) != " " ); string VARIABLE_FOR_LETTER_FOR_GETLINE{}; int VARIABLE_FOR_DIGIT_FOR_GETLINE{}; while( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ? ( VARIABLE_FOR_LETTER_FOR_GETLINE = S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) ) != " " : false ){ VARIABLE_FOR_DIGIT_FOR_GETLINE = stoi( VARIABLE_FOR_LETTER_FOR_GETLINE ); assert( N < BOUND / 10 ? true : N == BOUND / 10 && VARIABLE_FOR_DIGIT_FOR_GETLINE <= BOUND % 10 ); N = N * 10 + VARIABLE_FOR_DIGIT_FOR_GETLINE; VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; } if( ! VARIABLE_FOR_POSITIVITY_FOR_GETLINE ){ N *= -1; } if( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ){ VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; } }
// SをSEPARATORで区切りTを構築
#define SEPARATE( S , T , SEPARATOR ) string T{}; { assert( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ); int VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S_prev = VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S; assert( S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) != SEPARATOR ); string VARIABLE_FOR_LETTER_FOR_GETLINE{}; while( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ? ( VARIABLE_FOR_LETTER_FOR_GETLINE = S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) ) != SEPARATOR : false ){ VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; } T = S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S_prev , VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S - VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S_prev ); if( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ){ VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; } }
int main()
{
UNTIE;
CEXPR( int , bound_T , 100000 );
CIN_ASSERT( T , 1 , bound_T );
CEXPR( int , bound_N_sum , 200000 );
int N_rest = bound_N_sum;
string True = "True";
string False = "False";
CEXPR( int , op_length , 4 );
string op[op_length] = { "and" , "or" , "xor" , "imp" };
bool X[bound_N_sum];
int Y[bound_N_sum];
REPEAT( T ){
CIN_ASSERT( N , 2 , N_rest );
N_rest -= N;
FOR( i , 0 , N ){
CIN( string , Xi );
X[i] = Xi == True ? true : ( assert( Xi == False ) , false );
}
int N_minus = N - 1;
FOR( i , 0 , N_minus ){
CIN( string , Yi );
bool found = false;
FOR( j , 0 , op_length ){
if( Yi == op[j] ){
Y[i] = j;
found = true;
break;
}
}
assert( found );
}
// 「元々命題定数A_i(i < N)があった位置に現時点で置かれている命題定数の添字」を並べた数列の階差数列を管理
BIT<int> Kaiser{ uint( N ) };
FOR( j , 0 , N_minus ){
CIN_ASSERT( Si , 1 , N - j );
// 階差数列の累積和(つまり階差数列を取る前の数列の値)がSi以上となる最小の添字n
int n = Kaiser.BinarySearch( Si );
// 階差数列の累積和(つまり階差数列を取る前の数列の値)がSi-1以上となる最小の添字n_prev
int n_prev = Kaiser.BinarySearch( --Si );
Kaiser.Add( n , -1 );
int& Yn = Y[n - 1];
X[n_prev] =
Yn == 0 ? ( X[n_prev] && X[n] ) :
Yn == 1 ? ( X[n_prev] || X[n] ) :
Yn == 2 ? ( X[n_prev] != X[n] ) :
( ( !X[n_prev] ) || X[n] );
}
COUT( X[0] ? True : False );
}
CHECK_REDUNDANT_INPUT;
QUIT;
}