結果

問題 No.2308 [Cherry 5th Tune B] もしかして、真?
ユーザー 👑 p-adicp-adic
提出日時 2023-05-06 17:10:18
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 8,676 bytes
コンパイル時間 1,081 ms
コンパイル使用メモリ 83,180 KB
実行使用メモリ 6,824 KB
最終ジャッジ日時 2024-12-18 01:55:45
合計ジャッジ時間 6,062 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 WA -
testcase_02 WA -
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 AC 80 ms
5,248 KB
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 AC 79 ms
5,248 KB
testcase_20 WA -
testcase_21 AC 92 ms
5,248 KB
testcase_22 WA -
testcase_23 WA -
testcase_24 AC 92 ms
5,248 KB
testcase_25 AC 94 ms
5,248 KB
testcase_26 AC 91 ms
5,248 KB
testcase_27 AC 94 ms
5,248 KB
testcase_28 AC 97 ms
5,248 KB
testcase_29 AC 96 ms
5,248 KB
testcase_30 AC 91 ms
5,248 KB
testcase_31 AC 75 ms
5,248 KB
testcase_32 AC 76 ms
5,248 KB
testcase_33 WA -
testcase_34 AC 78 ms
5,248 KB
testcase_35 WA -
testcase_36 AC 78 ms
5,248 KB
testcase_37 WA -
testcase_38 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC optimize ( "O3" )
#pragma GCC optimize( "unroll-loops" )
#pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
#include <iostream>
#include <stdio.h>
#include <stdint.h>
#include <cassert>
#include <vector>
using namespace std;

using ll = long long;
using uint = unsigned int;

#define TYPE_OF( VAR ) remove_const<remove_reference<decltype( VAR )>::type >::type
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define CEXPR( LL , BOUND , VALUE ) constexpr const LL BOUND = VALUE
#define CIN( LL , A ) LL A; cin >> A
#define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) )
#define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX )
#define GETLINE( S ) string S; getline( cin , S )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES )
#define QUIT return 0
#define COUT( ANSWER ) cout << ( ANSWER ) << "\n"

// InitialSegmentSumで負の入力を扱うためにuintではなくintをテンプレート引数にする。
// 使用演算:
// T& T::operator=( const T& )
// T& T::operator+=( const T& )
// T operator-( const T& , const T& )(ただしIntervalSumを用いない場合は不要)
// T operator<( const T& , const T& )(ただしBinarySearchを用いない場合は不要)
template <typename T>
class BIT
{
private:
  int m_N;
  vector<T> m_fenwick;
  int m_power;

public:
  inline BIT( const uint& N );
  
  inline void Set( const int& i , const T& n );

  void Add( const int& i , const T& n );

  T InitialSegmentSum( const int& i_final ) const;
  inline T IntervalSum( const int& i_start , const int& i_final ) const;

  // operator+=の単位元T()より小さくない要素のみを成分に持つ場合のみサポート。
  // InitialSegmentSum( i )がt以上となるiが存在する場合にその最小値を2進法で探索。
  int BinarySearch( const T& t ) const;
  
};

template <typename T> inline BIT<T>::BIT( const uint& N ) : m_N( N ) , m_fenwick( N + 1 ) , m_power( 1 )
{
  // 1で初期化
  for( int j = 1 ; j <= N ; j++ ){

    T& fenwick_j = m_fenwick[j] = 1;
    int i = j - 1;
    int i_lim = j - ( j & -j );

    while( i != i_lim ){

      fenwick_j += m_fenwick[i];
      i -= ( i & -i );

    }

  }

  while( m_power < N ){

    m_power <<= 1;
    
  }
  
}

template <typename T> inline void BIT<T>::Set( const int& i , const T& n ) { Add( i , n - IntervalSum( i , i ) ); }

template <typename T>
void BIT<T>::Add( const int& i , const T& n )
{
  
  int j = i + 1;

  while( j <= m_N ){

    m_fenwick[j] += n;
    j += ( j & -j );

  }

  return;
  
}

template <typename T> 
T BIT<T>::InitialSegmentSum( const int& i_final ) const
{

  T sum = 0;
  int j = ( i_final < m_N ? i_final : m_N - 1 ) + 1;

  while( j > 0 ){

    sum += m_fenwick[j];
    j -= j & -j;
    
  }

  return sum;
  
}

template <typename T> inline T BIT<T>::IntervalSum( const int& i_start , const int& i_final ) const { return InitialSegmentSum( i_final ) - InitialSegmentSum( i_start - 1 ); }

template <typename T> inline int BIT<T>::BinarySearch( const T& t ) const
{

  int j = 0;
  int power = m_power;
  T sum{};
  T sum_next{};
  
  while( power > 0 ){

    int j_next = j | power;

    if( j_next < m_N ){
      
      sum_next += m_fenwick[j_next];

      if( sum_next < t ){
	
	sum = sum_next;
	j = j_next;

      } else {

	sum_next = sum;
	
      }
      
    }
    
    power >>= 1;

  }

  // InitialSegmentSum( i )がt未満となるiが存在するならばjはその最大値に1を足したものとなり、
  // InitialSegmentSum( i )がt未満となるiが存在しないならばj=0となり、
  // いずれの場合もjはInitialSegmentSum( i )がt以上となる最小のiと等しい。
  return j;

}

// 入力フォーマットチェック用
// 1行中の変数の個数を確認
#define GETLINE_COUNT( S , VARIABLE_NUMBER ) GETLINE( S ); int VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S = 0; int VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S  = S.size(); { int size = S.size(); int count = 0; for( int i = 0 ; i < size ; i++ ){ if( S.substr( i , 1 ) == " " ){ count++; } } assert( count + 1 == VARIABLE_NUMBER ); }
// 余計な入力の有無を確認
#define CHECK_REDUNDANT_INPUT string VARIABLE_FOR_CHECK_REDUNDANT_INPUT = ""; cin >> VARIABLE_FOR_CHECK_REDUNDANT_INPUT; assert( VARIABLE_FOR_CHECK_REDUNDANT_INPUT == "" ); assert( ! cin )
// #define CHECK_REDUNDANT_INPUT string VARIABLE_FOR_CHECK_REDUNDANT_INPUT = ""; getline( cin , VARIABLE_FOR_CHECK_REDUNDANT_INPUT ); assert( VARIABLE_FOR_CHECK_REDUNDANT_INPUT == "" ); assert( ! cin )
// |N| <= BOUNDを満たすNをSから構築
#define STOI( S , N , BOUND ) TYPE_OF( BOUND ) N = 0; { bool VARIABLE_FOR_POSITIVITY_FOR_GETLINE = true; assert( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ); if( S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) == "-" ){ VARIABLE_FOR_POSITIVITY_FOR_GETLINE = false; VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; assert( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ); } assert( S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) != " " ); string VARIABLE_FOR_LETTER_FOR_GETLINE{}; int VARIABLE_FOR_DIGIT_FOR_GETLINE{}; while( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ? ( VARIABLE_FOR_LETTER_FOR_GETLINE = S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) ) != " " : false ){ VARIABLE_FOR_DIGIT_FOR_GETLINE = stoi( VARIABLE_FOR_LETTER_FOR_GETLINE ); assert( N < BOUND / 10 ? true : N == BOUND / 10 && VARIABLE_FOR_DIGIT_FOR_GETLINE <= BOUND % 10 ); N = N * 10 + VARIABLE_FOR_DIGIT_FOR_GETLINE; VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; } if( ! VARIABLE_FOR_POSITIVITY_FOR_GETLINE ){ N *= -1; } if( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ){ VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; } }
// SをSEPARATORで区切りTを構築
#define SEPARATE( S , T , SEPARATOR ) string T{}; { assert( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ); int VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S_prev = VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S; assert( S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) != SEPARATOR ); string VARIABLE_FOR_LETTER_FOR_GETLINE{}; while( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ? ( VARIABLE_FOR_LETTER_FOR_GETLINE = S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) ) != SEPARATOR : false ){ VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; } T = S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S_prev , VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S - VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S_prev ); if( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ){ VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; } }

int main()
{
  UNTIE;
  CEXPR( int , bound_T , 100000 );
  CIN_ASSERT( T , 1 , bound_T );
  CEXPR( int , bound_N_sum , 200000 );
  int N_rest = bound_N_sum;
  string True = "True";
  string False = "False";
  CEXPR( int , op_length , 4 );
  string op[op_length] = { "and" , "or" , "xor" , "imp" };
  bool X[bound_N_sum];
  int Y[bound_N_sum];
  REPEAT( T ){
    CIN_ASSERT( N , 2 , N_rest );
    N_rest -= N;
    FOR( i , 0 , N ){
      CIN( string , Xi );
      X[i] = Xi == True ? true : ( assert( Xi == False ) , false );
    }
    int N_minus = N - 1;
    FOR( i , 0 , N_minus ){
      CIN( string , Yi );
      bool found = false;
      FOR( j , 0 , op_length ){
	if( Yi == op[j] ){
	  Y[i] = j;
	  found = true;
	  break;
	}
      }
      assert( found );
    }
    // 「元々命題定数A_i(i < N)があった位置に現時点で置かれている命題定数の添字」を並べた数列の階差数列を管理
    BIT<int> Kaiser{ uint( N ) };
    FOR( j , 0 , N_minus ){
      CIN_ASSERT( Si , 1 , N - j );
      // 階差数列の累積和(つまり階差数列を取る前の数列の値)がSi以上となる最小の添字n
      int n = Kaiser.BinarySearch( Si );
      // 階差数列の累積和(つまり階差数列を取る前の数列の値)がSi-1以上となる最小の添字n_prev
      int n_prev = Kaiser.BinarySearch( --Si );
      Kaiser.Add( n , -1 );
      int& Yn = Y[n - 1];
      X[n_prev] =
	Yn == 0 ? ( X[n_prev] && X[n] ) :
	Yn == 1 ? ( X[n_prev] || X[n] ) :
	Yn == 2 ? ( X[n_prev] != X[n] ) :
	( ( !X[n_prev] ) || X[n] );
    }
    COUT( X[0] ? True : False );
  }
  CHECK_REDUNDANT_INPUT;
  QUIT;
}
0