結果
問題 | No.2308 [Cherry 5th Tune B] もしかして、真? |
ユーザー |
👑 |
提出日時 | 2023-05-06 17:10:18 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 8,676 bytes |
コンパイル時間 | 3,049 ms |
コンパイル使用メモリ | 106,108 KB |
最終ジャッジ日時 | 2025-02-12 20:35:11 |
ジャッジサーバーID (参考情報) |
judge1 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 15 WA * 24 |
ソースコード
#pragma GCC optimize ( "O3" )#pragma GCC optimize( "unroll-loops" )#pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )#include <iostream>#include <stdio.h>#include <stdint.h>#include <cassert>#include <vector>using namespace std;using ll = long long;using uint = unsigned int;#define TYPE_OF( VAR ) remove_const<remove_reference<decltype( VAR )>::type >::type#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr )#define CEXPR( LL , BOUND , VALUE ) constexpr const LL BOUND = VALUE#define CIN( LL , A ) LL A; cin >> A#define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) )#define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX )#define GETLINE( S ) string S; getline( cin , S )#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES )#define QUIT return 0#define COUT( ANSWER ) cout << ( ANSWER ) << "\n"// InitialSegmentSumで負の入力を扱うためにuintではなくintをテンプレート引数にする。// 使用演算:// T& T::operator=( const T& )// T& T::operator+=( const T& )// T operator-( const T& , const T& )(ただしIntervalSumを用いない場合は不要)// T operator<( const T& , const T& )(ただしBinarySearchを用いない場合は不要)template <typename T>class BIT{private:int m_N;vector<T> m_fenwick;int m_power;public:inline BIT( const uint& N );inline void Set( const int& i , const T& n );void Add( const int& i , const T& n );T InitialSegmentSum( const int& i_final ) const;inline T IntervalSum( const int& i_start , const int& i_final ) const;// operator+=の単位元T()より小さくない要素のみを成分に持つ場合のみサポート。// InitialSegmentSum( i )がt以上となるiが存在する場合にその最小値を2進法で探索。int BinarySearch( const T& t ) const;};template <typename T> inline BIT<T>::BIT( const uint& N ) : m_N( N ) , m_fenwick( N + 1 ) , m_power( 1 ){// 1で初期化for( int j = 1 ; j <= N ; j++ ){T& fenwick_j = m_fenwick[j] = 1;int i = j - 1;int i_lim = j - ( j & -j );while( i != i_lim ){fenwick_j += m_fenwick[i];i -= ( i & -i );}}while( m_power < N ){m_power <<= 1;}}template <typename T> inline void BIT<T>::Set( const int& i , const T& n ) { Add( i , n - IntervalSum( i , i ) ); }template <typename T>void BIT<T>::Add( const int& i , const T& n ){int j = i + 1;while( j <= m_N ){m_fenwick[j] += n;j += ( j & -j );}return;}template <typename T>T BIT<T>::InitialSegmentSum( const int& i_final ) const{T sum = 0;int j = ( i_final < m_N ? i_final : m_N - 1 ) + 1;while( j > 0 ){sum += m_fenwick[j];j -= j & -j;}return sum;}template <typename T> inline T BIT<T>::IntervalSum( const int& i_start , const int& i_final ) const { return InitialSegmentSum( i_final ) -InitialSegmentSum( i_start - 1 ); }template <typename T> inline int BIT<T>::BinarySearch( const T& t ) const{int j = 0;int power = m_power;T sum{};T sum_next{};while( power > 0 ){int j_next = j | power;if( j_next < m_N ){sum_next += m_fenwick[j_next];if( sum_next < t ){sum = sum_next;j = j_next;} else {sum_next = sum;}}power >>= 1;}// InitialSegmentSum( i )がt未満となるiが存在するならばjはその最大値に1を足したものとなり、// InitialSegmentSum( i )がt未満となるiが存在しないならばj=0となり、// いずれの場合もjはInitialSegmentSum( i )がt以上となる最小のiと等しい。return j;}// 入力フォーマットチェック用// 1行中の変数の個数を確認#define GETLINE_COUNT( S , VARIABLE_NUMBER ) GETLINE( S ); int VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S = 0; int VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_## S = S.size(); { int size = S.size(); int count = 0; for( int i = 0 ; i < size ; i++ ){ if( S.substr( i , 1 ) == " " ){ count++; } } assert(count + 1 == VARIABLE_NUMBER ); }// 余計な入力の有無を確認#define CHECK_REDUNDANT_INPUT string VARIABLE_FOR_CHECK_REDUNDANT_INPUT = ""; cin >> VARIABLE_FOR_CHECK_REDUNDANT_INPUT; assert(VARIABLE_FOR_CHECK_REDUNDANT_INPUT == "" ); assert( ! cin )// #define CHECK_REDUNDANT_INPUT string VARIABLE_FOR_CHECK_REDUNDANT_INPUT = ""; getline( cin , VARIABLE_FOR_CHECK_REDUNDANT_INPUT ); assert(VARIABLE_FOR_CHECK_REDUNDANT_INPUT == "" ); assert( ! cin )// |N| <= BOUNDを満たすNをSから構築#define STOI( S , N , BOUND ) TYPE_OF( BOUND ) N = 0; { bool VARIABLE_FOR_POSITIVITY_FOR_GETLINE = true; assert( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ); if( S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) == "-" ){VARIABLE_FOR_POSITIVITY_FOR_GETLINE = false; VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; assert( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S <VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ); } assert( S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) != " " ); stringVARIABLE_FOR_LETTER_FOR_GETLINE{}; int VARIABLE_FOR_DIGIT_FOR_GETLINE{}; while( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S <VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ? ( VARIABLE_FOR_LETTER_FOR_GETLINE = S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) ) != " " :false ){ VARIABLE_FOR_DIGIT_FOR_GETLINE = stoi( VARIABLE_FOR_LETTER_FOR_GETLINE ); assert( N < BOUND / 10 ? true : N == BOUND / 10 &&VARIABLE_FOR_DIGIT_FOR_GETLINE <= BOUND % 10 ); N = N * 10 + VARIABLE_FOR_DIGIT_FOR_GETLINE; VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; } if( !VARIABLE_FOR_POSITIVITY_FOR_GETLINE ){ N *= -1; } if( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ){VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; } }// SをSEPARATORで区切りTを構築#define SEPARATE( S , T , SEPARATOR ) string T{}; { assert( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ); intVARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S_prev = VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S; assert( S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_## S , 1 ) != SEPARATOR ); string VARIABLE_FOR_LETTER_FOR_GETLINE{}; while( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S <VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ? ( VARIABLE_FOR_LETTER_FOR_GETLINE = S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) ) !=SEPARATOR : false ){ VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; } T = S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S_prev ,VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S - VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S_prev ); if( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S <VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ){ VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; } }int main(){UNTIE;CEXPR( int , bound_T , 100000 );CIN_ASSERT( T , 1 , bound_T );CEXPR( int , bound_N_sum , 200000 );int N_rest = bound_N_sum;string True = "True";string False = "False";CEXPR( int , op_length , 4 );string op[op_length] = { "and" , "or" , "xor" , "imp" };bool X[bound_N_sum];int Y[bound_N_sum];REPEAT( T ){CIN_ASSERT( N , 2 , N_rest );N_rest -= N;FOR( i , 0 , N ){CIN( string , Xi );X[i] = Xi == True ? true : ( assert( Xi == False ) , false );}int N_minus = N - 1;FOR( i , 0 , N_minus ){CIN( string , Yi );bool found = false;FOR( j , 0 , op_length ){if( Yi == op[j] ){Y[i] = j;found = true;break;}}assert( found );}// 「元々命題定数A_i(i < N)があった位置に現時点で置かれている命題定数の添字」を並べた数列の階差数列を管理BIT<int> Kaiser{ uint( N ) };FOR( j , 0 , N_minus ){CIN_ASSERT( Si , 1 , N - j );// 階差数列の累積和(つまり階差数列を取る前の数列の値)がSi以上となる最小の添字nint n = Kaiser.BinarySearch( Si );// 階差数列の累積和(つまり階差数列を取る前の数列の値)がSi-1以上となる最小の添字n_prevint n_prev = Kaiser.BinarySearch( --Si );Kaiser.Add( n , -1 );int& Yn = Y[n - 1];X[n_prev] =Yn == 0 ? ( X[n_prev] && X[n] ) :Yn == 1 ? ( X[n_prev] || X[n] ) :Yn == 2 ? ( X[n_prev] != X[n] ) :( ( !X[n_prev] ) || X[n] );}COUT( X[0] ? True : False );}CHECK_REDUNDANT_INPUT;QUIT;}