結果
問題 | No.1938 Lagrange Sum |
ユーザー | vwxyz |
提出日時 | 2023-05-09 11:52:08 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 2,800 ms / 3,000 ms |
コード長 | 44,395 bytes |
コンパイル時間 | 496 ms |
コンパイル使用メモリ | 86,772 KB |
実行使用メモリ | 77,688 KB |
最終ジャッジ日時 | 2024-11-25 23:17:59 |
合計ジャッジ時間 | 37,853 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2,236 ms
77,124 KB |
testcase_01 | AC | 2,234 ms
77,148 KB |
testcase_02 | AC | 2,233 ms
77,296 KB |
testcase_03 | AC | 55 ms
64,164 KB |
testcase_04 | AC | 53 ms
64,236 KB |
testcase_05 | AC | 1,895 ms
77,100 KB |
testcase_06 | AC | 2,068 ms
77,244 KB |
testcase_07 | AC | 78 ms
76,400 KB |
testcase_08 | AC | 488 ms
77,472 KB |
testcase_09 | AC | 211 ms
76,652 KB |
testcase_10 | AC | 2,744 ms
77,508 KB |
testcase_11 | AC | 527 ms
77,240 KB |
testcase_12 | AC | 2,768 ms
76,852 KB |
testcase_13 | AC | 2,800 ms
77,688 KB |
testcase_14 | AC | 1,012 ms
77,300 KB |
testcase_15 | AC | 161 ms
76,964 KB |
testcase_16 | AC | 2,574 ms
77,512 KB |
testcase_17 | AC | 967 ms
76,848 KB |
testcase_18 | AC | 982 ms
77,316 KB |
testcase_19 | AC | 2,679 ms
77,112 KB |
testcase_20 | AC | 2,661 ms
76,996 KB |
testcase_21 | AC | 115 ms
76,472 KB |
testcase_22 | AC | 65 ms
72,924 KB |
testcase_23 | AC | 103 ms
76,920 KB |
testcase_24 | AC | 2,595 ms
76,944 KB |
testcase_25 | AC | 54 ms
64,180 KB |
testcase_26 | AC | 54 ms
62,952 KB |
testcase_27 | AC | 54 ms
65,156 KB |
ソースコード
import sys readline=sys.stdin.readline def Tonelli_Shanks(N,p): if pow(N,p>>1,p)==p-1: retu=None elif p%4==3: retu=pow(N,(p+1)//4,p) else: for nonresidue in range(1,p): if pow(nonresidue,p>>1,p)==p-1: break pp=p-1 cnt=0 while pp%2==0: pp//=2 cnt+=1 s=pow(N,pp,p) retu=pow(N,(pp+1)//2,p) for i in range(cnt-2,-1,-1): if pow(s,1<<i,p)==p-1: s*=pow(nonresidue,p>>1+i,p) s%=p retu*=pow(nonresidue,p>>2+i,p) retu%=p return retu def Extended_Euclid(n,m): stack=[] while m: stack.append((n,m)) n,m=m,n%m if n>=0: x,y=1,0 else: x,y=-1,0 for i in range(len(stack)-1,-1,-1): n,m=stack[i] x,y=y,x-(n//m)*y return x,y class MOD: def __init__(self,p,e=None): self.p=p self.e=e if self.e==None: self.mod=self.p else: self.mod=self.p**self.e def Pow(self,a,n): a%=self.mod if n>=0: return pow(a,n,self.mod) else: #assert math.gcd(a,self.mod)==1 x=Extended_Euclid(a,self.mod)[0] return pow(x,-n,self.mod) def Build_Fact(self,N): assert N>=0 self.factorial=[1] if self.e==None: for i in range(1,N+1): self.factorial.append(self.factorial[-1]*i%self.mod) else: self.cnt=[0]*(N+1) for i in range(1,N+1): self.cnt[i]=self.cnt[i-1] ii=i while ii%self.p==0: ii//=self.p self.cnt[i]+=1 self.factorial.append(self.factorial[-1]*ii%self.mod) self.factorial_inve=[None]*(N+1) self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1) for i in range(N-1,-1,-1): ii=i+1 while ii%self.p==0: ii//=self.p self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod def Build_Inverse(self,N): self.inverse=[None]*(N+1) assert self.p>N self.inverse[1]=1 for n in range(2,N+1): if n%self.p==0: continue a,b=divmod(self.mod,n) self.inverse[n]=(-a*self.inverse[b])%self.mod def Inverse(self,n): return self.inverse[n] def Fact(self,N): if N<0: return 0 retu=self.factorial[N] if self.e!=None and self.cnt[N]: retu*=pow(self.p,self.cnt[N],self.mod)%self.mod retu%=self.mod return retu def Fact_Inve(self,N): if self.e!=None and self.cnt[N]: return None return self.factorial_inve[N] def Comb(self,N,K,divisible_count=False): if K<0 or K>N: return 0 retu=self.factorial[N]*self.factorial_inve[K]%self.mod*self.factorial_inve[N-K]%self.mod if self.e!=None: cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K] if divisible_count: return retu,cnt else: retu*=pow(self.p,cnt,self.mod) retu%=self.mod return retu class Polynomial: def __init__(self,polynomial,max_degree=-1,eps=0,mod=0): self.max_degree=max_degree if self.max_degree!=-1 and len(polynomial)>self.max_degree+1: self.polynomial=polynomial[:self.max_degree+1] else: self.polynomial=polynomial self.mod=mod self.eps=eps def __eq__(self,other): if type(other)!=Polynomial: return False if len(self.polynomial)!=len(other.polynomial): return False for i in range(len(self.polynomial)): if self.eps<abs(self.polynomial[i]-other.polynomial[i]): return False return True def __ne__(self,other): if type(other)!=Polynomial: return True if len(self.polynomial)!=len(other.polynomial): return True for i in range(len(self.polynomial)): if self.eps<abs(self.polynomial[i]-other.polynomial[i]): return True return False def __add__(self,other): if type(other)==Polynomial: summ=[0]*max(len(self.polynomial),len(other.polynomial)) for i in range(len(self.polynomial)): summ[i]+=self.polynomial[i] for i in range(len(other.polynomial)): summ[i]+=other.polynomial[i] if self.mod: for i in range(len(summ)): summ[i]%=self.mod else: summ=[x for x in self.polynomial] if self.polynomial else [0] summ[0]+=other if self.mod: summ[0]%=self.mod while summ and abs(summ[-1])<=self.eps: summ.pop() summ=Polynomial(summ,max_degree=self.max_degree,eps=self.eps,mod=self.mod) return summ def __sub__(self,other): if type(other)==Polynomial: diff=[0]*max(len(self.polynomial),len(other.polynomial)) for i in range(len(self.polynomial)): diff[i]+=self.polynomial[i] for i in range(len(other.polynomial)): diff[i]-=other.polynomial[i] if self.mod: for i in range(len(diff)): diff[i]%=self.mod else: diff=[x for x in self.polynomial] if self.polynomial else [0] diff[0]-=other if self.mod: diff[0]%=self.mod while diff and abs(diff[-1])<=self.eps: diff.pop() diff=Polynomial(diff,max_degree=self.max_degree,eps=self.eps,mod=self.mod) return diff def __mul__(self,other): if type(other)==Polynomial: if self.max_degree==-1: prod=[0]*(len(self.polynomial)+len(other.polynomial)-1) for i in range(len(self.polynomial)): for j in range(len(other.polynomial)): prod[i+j]+=self.polynomial[i]*other.polynomial[j] else: prod=[0]*min(len(self.polynomial)+len(other.polynomial)-1,self.max_degree+1) for i in range(len(self.polynomial)): for j in range(min(len(other.polynomial),self.max_degree+1-i)): prod[i+j]+=self.polynomial[i]*other.polynomial[j] if self.mod: for i in range(len(prod)): prod[i]%=self.mod else: if self.mod: prod=[x*other%self.mod for x in self.polynomial] else: prod=[x*other for x in self.polynomial] while prod and abs(prod[-1])<=self.eps: prod.pop() prod=Polynomial(prod,max_degree=self.max_degree,eps=self.eps,mod=self.mod) return prod def __matmul__(self,other): assert type(other)==Polynomial if self.mod: prod=NTT(self.polynomial,other.polynomial) else: prod=FFT(self.polynomial,other.polynomial) if self.max_degree!=-1 and len(prod)>self.max_degree+1: prod=prod[:self.max_degree+1] while prod and abs(prod[-1])<=self.eps: prod.pop() prod=Polynomial(prod,max_degree=self.max_degree,eps=self.eps,mod=self.mod) return prod def __pow__(self,other): if other==0: prod=Polynomial([1],max_degree=self.max_degree,eps=self.eps,mod=self.mod) elif other==1: prod=Polynomial([x for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod) else: prod=[1] doub=self.polynomial if self.mod: convolve=NTT convolve_Pow=NTT_Pow else: convolve=FFT convolve_Pow=FFT_Pow while other>=2: if other&1: prod=convolve(prod,doub) if self.max_degree!=-1: prod=prod[:self.max_degree+1] doub=convolve_Pow(doub,2) if self.max_degree!=-1: doub=doub[:self.max_degree+1] other>>=1 prod=convolve(prod,doub) if self.max_degree!=-1: prod=prod[:self.max_degree+1] prod=Polynomial(prod,max_degree=self.max_degree,eps=self.eps,mod=self.mod) return prod def __truediv__(self,other): if type(other)==Polynomial: assert other.polynomial for n in range(len(other.polynomial)): if self.eps<abs(other.polynomial[n]): break assert len(self.polynomial)>n for i in range(n): assert abs(self.polynomial[i])<=self.eps self_polynomial=self.polynomial[n:] other_polynomial=other.polynomial[n:] if self.mod: inve=MOD(self.mod).Pow(other_polynomial[0],-1) else: inve=1/other_polynomial[0] quot=[] for i in range(len(self_polynomial)-len(other_polynomial)+1): if self.mod: quot.append(self_polynomial[i]*inve%self.mod) else: quot.append(self_polynomial[i]*inve) for j in range(len(other_polynomial)): self_polynomial[i+j]-=other_polynomial[j]*quot[-1] if self.mod: self_polynomial[i+j]%=self.mod for i in range(max(0,len(self_polynomial)-len(other_polynomial)+1),len(self_polynomial)): if self.eps<abs(self_polynomial[i]): assert self.max_degree!=-1 self_polynomial=self_polynomial[-len(other_polynomial)+1:]+[0]*(len(other_polynomial)-1-len(self_polynomial)) while len(quot)<=self.max_degree: self_polynomial.append(0) if self.mod: quot.append(self_polynomial[0]*inve%self.mod) self_polynomial=[(self_polynomial[i]-other_polynomial[i]*quot[-1])%self.mod for i in range(1,len(self_polynomial))] else: quot.append(self_polynomial[0]*inve) self_polynomial=[(self_polynomial[i]-other_polynomial[i]*quot[-1]) for i in range(1,len(self_polynomial))] break quot=Polynomial(quot,max_degree=self.max_degree,eps=self.eps,mod=self.mod) else: assert self.eps<abs(other) if self.mod: inve=MOD(self.mod).Pow(other,-1) quot=Polynomial([x*inve%self.mod for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod) else: quot=Polynomial([x/other for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod) return quot def __floordiv__(self,other): assert type(other)==Polynomial quot=[0]*(len(self.polynomial)-len(other.polynomial)+1) rema=[x for x in self.polynomial] if self.mod: inve=MOD(self.mod).Pow(other.polynomial[-1],-1) for i in range(len(self.polynomial)-len(other.polynomial),-1,-1): quot[i]=rema[i+len(other.polynomial)-1]*inve%self.mod for j in range(len(other.polynomial)): rema[i+j]-=quot[i]*other.polynomial[j] rema[i+j]%=self.mod else: inve=1/other.polynomial[-1] for i in range(len(self.polynomial)-len(other.polynomial),-1,-1): quot[i]=rema[i+len(other.polynomial)-1]*inve for j in range(len(other.polynomial)): rema[i+j]-=quot[i]*other.polynomial[j] quot=Polynomial(quot,max_degree=self.max_degree,eps=self.eps,mod=self.mod) return quot def __mod__(self,other): assert type(other)==Polynomial quot=[0]*(len(self.polynomial)-len(other.polynomial)+1) rema=[x for x in self.polynomial] if self.mod: inve=MOD(self.mod).Pow(other.polynomial[-1],-1) for i in range(len(self.polynomial)-len(other.polynomial),-1,-1): quot[i]=rema[i+len(other.polynomial)-1]*inve%self.mod for j in range(len(other.polynomial)): rema[i+j]-=quot[i]*other.polynomial[j] rema[i+j]%=self.mod else: inve=1/other.polynomial[-1] for i in range(len(self.polynomial)-len(other.polynomial),-1,-1): quot[i]=rema[i+len(other.polynomial)-1]*inve for j in range(len(other.polynomial)): rema[i+j]-=quot[i]*other.polynomial[j] while rema and abs(rema[-1])<=self.eps: rema.pop() rema=Polynomial(rema,max_degree=self.max_degree,eps=self.eps,mod=self.mod) return rema def __divmod__(self,other): assert type(other)==Polynomial quot=[0]*(len(self.polynomial)-len(other.polynomial)+1) rema=[x for x in self.polynomial] if self.mod: inve=MOD(self.mod).Pow(other.polynomial[-1],-1) for i in range(len(self.polynomial)-len(other.polynomial),-1,-1): quot[i]=rema[i+len(other.polynomial)-1]*inve%self.mod for j in range(len(other.polynomial)): rema[i+j]-=quot[i]*other.polynomial[j] rema[i+j]%=self.mod else: inve=1/other.polynomial[-1] for i in range(len(self.polynomial)-len(other.polynomial),-1,-1): quot[i]=rema[i+len(other.polynomial)-1]*inve for j in range(len(other.polynomial)): rema[i+j]-=quot[i]*other.polynomial[j] while rema and abs(rema[-1])<=self.eps: rema.pop() quot=Polynomial(quot,max_degree=self.max_degree,eps=self.eps,mod=self.mod) rema=Polynomial(rema,max_degree=self.max_degree,eps=self.eps,mod=self.mod) return quot,rema def __neg__(self): if self.mod: nega=Polynomial([(-x)%self.mod for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod) else: nega=Polynomial([-x for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod) return nega def __pos__(self): posi=Polynomial([x for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod) return posi def __bool__(self): return self.polynomial def __getitem__(self,n): if type(n)==int: if n<=len(self.polynomial)-1: return self.polynomial[n] else: return 0 else: return Polynomial(polynomial=self.polynomial[n],max_degree=self.max_degree,eps=self.eps,mod=self.mod) def __setitem__(self,n,a): if self.mod: a%=self.mod if self.max_degree==-1 or n<=self.max_degree: if n<=len(self.polynomial)-1: self.polynomial[n]=a elif self.eps<abs(a): self.polynomial+=[0]*(n-len(self.polynomial))+[a] def __iter__(self): for x in self.polynomial: yield x def __call__(self,x): retu=0 pow_x=1 for i in range(len(self.polynomial)): retu+=pow_x*self.polynomial[i] pow_x*=x if self.mod: retu%=self.mod pow_x%=self.mod return retu def __str__(self): return "["+", ".join(map(str,self.polynomial))+"]" def __len__(self): return len(self.polynomial) def differentiate(self): if self.mod: differential=[x*i%self.mod for i,x in enumerate(self.polynomial[1:],1)] else: differential=[x*i for i,x in enumerate(self.polynomial[1:],1)] return Polynomial(differential,max_degree=self.max_degree,eps=self.eps,mod=self.mod) def integrate(self): if self.mod: integral=[0]+[x*MOD(mod).Pow(i+1,-1)%self.mod for i,x in enumerate(self.polynomial)] else: integral=[0]+[x/(i+1) for i,x in enumerate(self.polynomial)] while integral and abs(integral[-1])<=self.eps: integral.pop() return Polynomial(integral,max_degree=self.max_degree,eps=self.eps,mod=self.mod) def inverse(self): assert self.polynomial and self.eps<self.polynomial[0] assert self.max_degree!=-1 if self.mod: quot=[MOD(self.mod).Pow(self.polynomial[0],-1)] if self.mod==998244353: prim_root=3 prim_root_inve=332748118 else: prim_root=Primitive_Root(self.mod) prim_root_inve=MOD(self.mod).Pow(prim_root,-1) def DFT(polynomial,n,inverse=False): polynomial=polynomial+[0]*((1<<n)-len(polynomial)) if inverse: for bit in range(1,n+1): a=1<<bit-1 x=pow(prim_root,self.mod-1>>bit,self.mod) U=[1] for _ in range(a): U.append(U[-1]*x%self.mod) for i in range(1<<n-bit): for j in range(a): s=i*2*a+j t=s+a polynomial[s],polynomial[t]=(polynomial[s]+polynomial[t]*U[j])%self.mod,(polynomial[s]-polynomial[t]*U[j])%self.mod x=pow((self.mod+1)//2,n,self.mod) for i in range(1<<n): polynomial[i]*=x polynomial[i]%=self.mod else: for bit in range(n,0,-1): a=1<<bit-1 x=pow(prim_root_inve,self.mod-1>>bit,self.mod) U=[1] for _ in range(a): U.append(U[-1]*x%self.mod) for i in range(1<<n-bit): for j in range(a): s=i*2*a+j t=s+a polynomial[s],polynomial[t]=(polynomial[s]+polynomial[t])%self.mod,U[j]*(polynomial[s]-polynomial[t])%self.mod return polynomial else: quot=[1/self.polynomial[0]] def DFT(polynomial,n,inverse=False): N=len(polynomial) if inverse: primitive_root=[math.cos(-i*2*math.pi/(1<<n))+math.sin(-i*2*math.pi/(1<<n))*1j for i in range(1<<n)] else: primitive_root=[math.cos(i*2*math.pi/(1<<n))+math.sin(i*2*math.pi/(1<<n))*1j for i in range(1<<n)] polynomial=polynomial+[0]*((1<<n)-N) if inverse: for bit in range(1,n+1): a=1<<bit-1 for i in range(1<<n-bit): for j in range(a): s=i*2*a+j t=s+a polynomial[s],polynomial[t]=polynomial[s]+polynomial[t]*primitive_root[j<<n-bit],polynomial[s]-polynomial[t]*primitive_root[j<<n-bit] for i in range(1<<n): polynomial[i]=round((polynomial[i]/(1<<n)).real) else: for bit in range(n,0,-1): a=1<<bit-1 for i in range(1<<n-bit): for j in range(a): s=i*2*a+j t=s+a polynomial[s],polynomial[t]=polynomial[s]+polynomial[t],primitive_root[j<<n-bit]*(polynomial[s]-polynomial[t]) return polynomial for n in range(self.max_degree.bit_length()): prev=quot DFT_prev=DFT(prev,n+1) if self.mod: quot=[x*y%self.mod for x,y in zip(DFT_prev,DFT(self.polynomial[:1<<n+1],n+1))] else: quot=[x*y for x,y in zip(DFT_prev,DFT(self.polynomial[:1<<n+1],n+1))] quot=DFT([0]*(1<<n)+DFT(quot,n+1,inverse=True)[1<<n:],n+1) if self.mod: quot=[(-x*y)%self.mod for x,y in zip(DFT_prev,quot)] else: quot=[-x*y for x,y in zip(DFT_prev,quot)] quot=prev+DFT(quot,n+1,inverse=True)[1<<n:] quot=quot[:self.max_degree+1] quot=Polynomial(quot,max_degree=self.max_degree,eps=self.eps,mod=self.mod) return quot def log(self): assert self.max_degree!=-1 assert self.polynomial and abs(self.polynomial[0]-1)<=self.eps log=self.inverse() if self.mod: log=Polynomial(NTT(self.differentiate().polynomial,log.polynomial),max_degree=self.max_degree,eps=self.eps,mod=self.mod) else: log=Polynomial(FFT(self.differentiate().polynomial,log.polynomial),max_degree=self.max_degree,eps=self.eps,mod=self.mod) log=log.integrate() return log def Newton(self,n0,f,differentiated_f=None): newton=[n0] while len(newton)<self.max_degree+1: prev=newton if differentiated_f==None: newton=f(prev,self.polynomial) else: newton=f(prev) for i in range(min(len(self.polynomial),len(newton))): newton[i]-=self.polynomial[i] newton[i]%=self.mod if self.mod: newton=NTT(newton,Polynomial(differentiated_f(prev),max_degree=len(newton)-1,eps=self.eps,mod=self.mod).inverse().polynomial)[:len(newton)] else: newton=FFT(newton,Polynomial(differentiated_f(prev),max_degree=len(newton)-1,eps=self.eps,mod=self.mod).inverse().polynomial)[:len(newton)] for i in range(len(newton)): newton[i]=-newton[i] newton[i]%=self.mod for i in range(len(prev)): newton[i]+=prev[i] newton[i]%=self.mod newton=newton[:self.max_degree+1] while newton and newton[-1]<=self.eps: newton.pop() return Polynomial(newton,max_degree=self.max_degree,eps=self.eps,mod=self.mod) def sqrt(self): if self.polynomial: for cnt0 in range(len(self.polynomial)): if self.polynomial[cnt0]: break if cnt0%2: sqrt=None else: if self.mod: n0=Tonelli_Shanks(self.polynomial[cnt0],self.mod) else: if self.polynomial[cnt0]>=self.eps: n0=self.polynomial[cnt0]**.5 if n0==None: sqrt=None else: def f(prev): if self.mod: return NTT_Pow(prev,2)+[0] else: return FFT_Pow(prev,2)+[0] def differentiated_f(prev): retu=[0]*(2*len(prev)-1) for i in range(len(prev)): retu[i]+=2*prev[i] if self.mod: retu[i]%self.mod return retu sqrt=[0]*(cnt0//2)+Polynomial(self.polynomial[cnt0:],max_degree=self.max_degree-cnt0//2,mod=self.mod).Newton(n0,f,differentiated_f).polynomial sqrt=Polynomial(sqrt,max_degree=self.max_degree,eps=self.eps,mod=self.mod) else: sqrt=Polynomial([],max_degree=self.max_degree,eps=self.eps,mod=self.mod) return sqrt def exp(self): assert not self.polynomial or abs(self.polynomial[0])<=self.eps def f(prev,poly): newton=Polynomial(prev,max_degree=2*len(prev)-1,eps=self.eps,mod=self.mod).log().polynomial newton+=[0]*(2*len(prev)-len(newton)) for i in range(min(len(poly),len(newton))): newton[i]-=poly[i] if self.mod: for i in range(len(newton)): newton[i]%=self.mod if self.mod: return NTT(prev,newton)[:2*len(prev)] else: return FFT(prev,newton)[:2*len(prev)] return Polynomial(self.polynomial,max_degree=self.max_degree,mod=self.mod).Newton(1,f) def Degree(self): return len(self.polynomial)-1 def Hadamard(polynomial,n,mod=0,inverse=False): polynomial_=[x for x in polynomial]+[0]*((1<<n)-len(polynomial)) for bit in range(n): for i in range(1<<n): ii=i^(1<<bit) if i>ii: continue polynomial_[i],polynomial_[ii]=polynomial_[i]+polynomial_[ii],polynomial_[i]-polynomial_[ii] if mod: polynomial_[i]%=mod polynomial_[ii]%=mod if inverse: if mod: inve_2=pow((mod+1)//2,n) for i in range(1<<n): polynomial_[i]*=inve_2 polynomial_[i]%=mod else: pow_2=pow(2,n) for i in range(1<<n): polynomial_[i]/=pow_2 return polynomial_ def XOR_Convolution(polynomial0,polynomial1,mod=0): n=(max(len(polynomial0),len(polynomial1))-1).bit_length() Hadamard_polynomial0=Hadamard(polynomial0,n,mod=mod) Hadamard_polynomial1=Hadamard(polynomial1,n,mod=mod) if mod: convolution=[x*y%mod for x,y in zip(Hadamard_polynomial0,Hadamard_polynomial1)] else: convolution=[x*y for x,y in zip(Hadamard_polynomial0,Hadamard_polynomial1)] convolution=Hadamard(convolution,n,mod=mod,inverse=True) return convolution def Bostan_Mori(poly_nume,poly_deno,N,mod=0,convolve=None): if type(poly_nume)==Polynomial: poly_nume=poly_nume.polynomial if type(poly_deno)==Polynomial: poly_deno=poly_deno.polynomial if convolve==None: def convolve(poly_nume,poly_deno): conv=[0]*(len(poly_nume)+len(poly_deno)-1) for i in range(len(poly_nume)): for j in range(len(poly_deno)): x=poly_nume[i]*poly_deno[j] if mod: x%=mod conv[i+j]+=x if mod: for i in range(len(conv)): conv[i]%=mod return conv while N: poly_deno_=[-x if i%2 else x for i,x in enumerate(poly_deno)] if N%2: poly_nume=convolve(poly_nume,poly_deno_)[1::2] else: poly_nume=convolve(poly_nume,poly_deno_)[::2] poly_deno=convolve(poly_deno,poly_deno_)[::2] if mod: for i in range(len(poly_nume)): poly_nume[i]%=mod for i in range(len(poly_deno)): poly_deno[i]%=mod N//=2 return poly_nume[0] #mod = 998244353 imag = 911660635 iimag = 86583718 rate2 = (911660635, 509520358, 369330050, 332049552, 983190778, 123842337, 238493703, 975955924, 603855026, 856644456, 131300601, 842657263, 730768835, 942482514, 806263778, 151565301, 510815449, 503497456, 743006876, 741047443, 56250497, 867605899) irate2 = (86583718, 372528824, 373294451, 645684063, 112220581, 692852209, 155456985, 797128860, 90816748, 860285882, 927414960, 354738543, 109331171, 293255632, 535113200, 308540755, 121186627, 608385704, 438932459, 359477183, 824071951, 103369235) rate3 = (372528824, 337190230, 454590761, 816400692, 578227951, 180142363, 83780245, 6597683, 70046822, 623238099, 183021267, 402682409, 631680428, 344509872, 689220186, 365017329, 774342554, 729444058, 102986190, 128751033, 395565204) irate3 = (509520358, 929031873, 170256584, 839780419, 282974284, 395914482, 444904435, 72135471, 638914820, 66769500, 771127074, 985925487, 262319669, 262341272, 625870173, 768022760, 859816005, 914661783, 430819711, 272774365, 530924681) def butterfly(a): n = len(a) h = (n - 1).bit_length() len_ = 0 while len_ < h: if h - len_ == 1: p = 1 << (h - len_ - 1) rot = 1 for s in range(1 << len_): offset = s << (h - len_) for i in range(p): l = a[i + offset] r = a[i + offset + p] * rot % mod a[i + offset] = (l + r) % mod a[i + offset + p] = (l - r) % mod if s + 1 != 1 << len_: rot *= rate2[(~s & -~s).bit_length() - 1] rot %= mod len_ += 1 else: p = 1 << (h - len_ - 2) rot = 1 for s in range(1 << len_): rot2 = rot * rot % mod rot3 = rot2 * rot % mod offset = s << (h - len_) for i in range(p): a0 = a[i + offset] a1 = a[i + offset + p] * rot a2 = a[i + offset + p * 2] * rot2 a3 = a[i + offset + p * 3] * rot3 a1na3imag = (a1 - a3) % mod * imag a[i + offset] = (a0 + a2 + a1 + a3) % mod a[i + offset + p] = (a0 + a2 - a1 - a3) % mod a[i + offset + p * 2] = (a0 - a2 + a1na3imag) % mod a[i + offset + p * 3] = (a0 - a2 - a1na3imag) % mod if s + 1 != 1 << len_: rot *= rate3[(~s & -~s).bit_length() - 1] rot %= mod len_ += 2 def butterfly_inv(a): n = len(a) h = (n - 1).bit_length() len_ = h while len_: if len_ == 1: p = 1 << (h - len_) irot = 1 for s in range(1 << (len_ - 1)): offset = s << (h - len_ + 1) for i in range(p): l = a[i + offset] r = a[i + offset + p] a[i + offset] = (l + r) % mod a[i + offset + p] = (l - r) * irot % mod if s + 1 != (1 << (len_ - 1)): irot *= irate2[(~s & -~s).bit_length() - 1] irot %= mod len_ -= 1 else: p = 1 << (h - len_) irot = 1 for s in range(1 << (len_ - 2)): irot2 = irot * irot % mod irot3 = irot2 * irot % mod offset = s << (h - len_ + 2) for i in range(p): a0 = a[i + offset] a1 = a[i + offset + p] a2 = a[i + offset + p * 2] a3 = a[i + offset + p * 3] a2na3iimag = (a2 - a3) * iimag % mod a[i + offset] = (a0 + a1 + a2 + a3) % mod a[i + offset + p] = (a0 - a1 + a2na3iimag) * irot % mod a[i + offset + p * 2] = (a0 + a1 - a2 - a3) * irot2 % mod a[i + offset + p * 3] = (a0 - a1 - a2na3iimag) * irot3 % mod if s + 1 != (1 << (len_ - 2)): irot *= irate3[(~s & -~s).bit_length() - 1] irot %= mod len_ -= 2 def integrate(a): a=a.copy() n = len(a) assert n > 0 a.pop() a.insert(0, 0) inv = [1, 1] for i in range(2, n): inv.append(-inv[mod%i] * (mod//i) % mod) a[i] = a[i] * inv[i] % mod return a def differentiate(a): n = len(a) assert n > 0 for i in range(2, n): a[i] = a[i] * i % mod a.pop(0) a.append(0) return a def convolution_naive(a, b): n = len(a) m = len(b) ans = [0] * (n + m - 1) if n < m: for j in range(m): for i in range(n): ans[i + j] = (ans[i + j] + a[i] * b[j]) % mod else: for i in range(n): for j in range(m): ans[i + j] = (ans[i + j] + a[i] * b[j]) % mod return ans def convolution_ntt(a, b): a = a.copy() b = b.copy() n = len(a) m = len(b) z = 1 << (n + m - 2).bit_length() a += [0] * (z - n) butterfly(a) b += [0] * (z - m) butterfly(b) for i in range(z): a[i] = a[i] * b[i] % mod butterfly_inv(a) a = a[:n + m - 1] iz = pow(z, mod - 2, mod) for i in range(n + m - 1): a[i] = a[i] * iz % mod return a def convolution_square(a): a = a.copy() n = len(a) z = 1 << (2 * n - 2).bit_length() a += [0] * (z - n) butterfly(a) for i in range(z): a[i] = a[i] * a[i] % mod butterfly_inv(a) a = a[:2 * n - 1] iz = pow(z, mod - 2, mod) for i in range(2 * n - 1): a[i] = a[i] * iz % mod return a def convolution(a, b): """It calculates (+, x) convolution in mod 998244353. Given two arrays a[0], a[1], ..., a[n - 1] and b[0], b[1], ..., b[m - 1], it calculates the array c of length n + m - 1, defined by > c[i] = sum(a[j] * b[i - j] for j in range(i + 1)) % 998244353. It returns an empty list if at least one of a and b are empty. Complexity ---------- > O(n log n), where n = len(a) + len(b). """ n = len(a) m = len(b) if n == 0 or m == 0: return [] if min(n, m) <= 60: return convolution_naive(a, b) if a is b: return convolution_square(a) return convolution_ntt(a, b) def inverse(a): n = len(a) assert n > 0 and a[0] != 0 res = [pow(a[0], mod - 2, mod)] m = 1 while m < n: f = a[:min(n,2*m)] + [0]*(2*m-min(n,2*m)) g = res + [0]*m butterfly(f) butterfly(g) for i in range(2*m): f[i] = f[i] * g[i] % mod butterfly_inv(f) f = f[m:] + [0]*m butterfly(f) for i in range(2*m): f[i] = f[i] * g[i] % mod butterfly_inv(f) iz = pow(2*m, mod-2, mod) iz = (-iz*iz) % mod for i in range(m): f[i] = f[i] * iz % mod res += f[:m] m <<= 1 return res[:n] def log(a): a = a.copy() n = len(a) assert n > 0 and a[0] == 1 a_inv = inverse(a) a=differentiate(a) a = convolution(a, a_inv)[:n] a=integrate(a) return a def exp(a): a = a.copy() n = len(a) assert n > 0 and a[0] == 0 g = [1] a[0] = 1 h_drv = a.copy() h_drv=differentiate(h_drv) m = 1 while m < n: f_fft = a[:m] + [0] * m butterfly(f_fft) if m > 1: _f = [f_fft[i] * g_fft[i] % mod for i in range(m)] butterfly_inv(_f) _f = _f[m // 2:] + [0] * (m // 2) butterfly(_f) for i in range(m): _f[i] = _f[i] * g_fft[i] % mod butterfly_inv(_f) _f = _f[:m//2] iz = pow(m, mod - 2, mod) iz *= -iz iz %= mod for i in range(m//2): _f[i] = _f[i] * iz % mod g.extend(_f) t = a[:m] t=differentiate(t) r = h_drv[:m - 1] r.append(0) butterfly(r) for i in range(m): r[i] = r[i] * f_fft[i] % mod butterfly_inv(r) im = pow(-m, mod - 2, mod) for i in range(m): r[i] = r[i] * im % mod for i in range(m): t[i] = (t[i] + r[i]) % mod t = [t[-1]] + t[:-1] t += [0] * m butterfly(t) g_fft = g + [0] * (2 * m - len(g)) butterfly(g_fft) for i in range(2 * m): t[i] = t[i] * g_fft[i] % mod butterfly_inv(t) t = t[:m] i2m = pow(2 * m, mod - 2, mod) for i in range(m): t[i] = t[i] * i2m % mod v = a[m:min(n, 2 * m)] v += [0] * (m - len(v)) t = [0] * (m - 1) + t + [0] t=integrate(t) for i in range(m): v[i] = (v[i] - t[m + i]) % mod v += [0] * m butterfly(v) for i in range(2 * m): v[i] = v[i] * f_fft[i] % mod butterfly_inv(v) v = v[:m] i2m = pow(2 * m, mod - 2, mod) for i in range(m): v[i] = v[i] * i2m % mod for i in range(min(n - m, m)): a[m + i] = v[i] m *= 2 return a def power(a,k): n = len(a) assert n>0 if k==0: return [1]+[0]*(n-1) l = 0 while l < len(a) and not a[l]: l += 1 if l * k >= n: return [0] * n ic = pow(a[l], mod - 2, mod) pc = pow(a[l], k, mod) a = log([a[i] * ic % mod for i in range(l, len(a))]) for i in range(len(a)): a[i] = a[i] * k % mod a = exp(a) for i in range(len(a)): a[i] = a[i] * pc % mod a = [0] * (l * k) + a[:n - l * k] return a def sqrt(a): if len(a) == 0: return [] if a[0] == 0: for d in range(1, len(a)): if a[d]: if d & 1: return None if len(a) - 1 < d // 2: break res=sqrt(a[d:]+[0]*(d//2)) if res == None: return None res = [0]*(d//2)+res return res return [0]*len(a) sqr = Tonelli_Shanks(a[0],mod) if sqr == None: return None T = [0] * (len(a)) T[0] = sqr res = T.copy() T[0] = pow(sqr,mod-2,mod) #T:res^{-1} m = 1 two_inv = (mod + 1) // 2 F = [sqr] while m <= len(a) - 1: for i in range(m): F[i] *= F[i] F[i] %= mod butterfly_inv(F) iz = pow(m, mod-2, mod) for i in range(m): F[i] = F[i] * iz % mod delta = [0] * (2 * m) for i in range(m): delta[i + m] = F[i] - a[i] - (a[i + m] if i+m<len(a) else 0) butterfly(delta) G = [0] * (2 * m) for i in range(m): G[i] = T[i] butterfly(G) for i in range(2 * m): delta[i] *= G[i] delta[i] %= mod butterfly_inv(delta) iz = pow(2*m, mod-2, mod) for i in range(2*m): delta[i] = delta[i] * iz % mod for i in range(m, min(2 * m, len(a))): res[i] = -delta[i] * two_inv%mod res[i]%=mod if 2 * m > len(a) - 1: break F = res[:2 * m] butterfly(F) eps = [F[i] * G[i] % mod for i in range(2 * m)] butterfly_inv(eps) for i in range(m): eps[i] = 0 iz = pow(2*m, mod-2, mod) for i in range(m,2*m): eps[i] = eps[i] * iz % mod butterfly(eps) for i in range(2 * m): eps[i] *= G[i] eps[i] %= mod butterfly_inv(eps) for i in range(m, 2 * m): T[i] = -eps[i]*iz T[i]%=mod iz = iz*iz % mod m <<= 1 return res def taylor_shift(a,c): a=a.copy() n=len(a) MD=MOD(mod) MD.Build_Fact(n-1) for i in range(n): a[i]*=MD.Fact(i) a[i]%=mod C=[1] for i in range(1,n): C.append(C[-1]*c%mod) for i in range(n): C[i]*=MD.Fact_Inve(i) C[i]%=mod a=convolution(a,C[::-1])[n-1:] for i in range(n): a[i]*=MD.Fact_Inve(i) a[i]%=mod return a def division_modulus(f,g): n=len(f) m=len(g) while m and g[m-1]==0: m-=1 assert m if n>=m: fR=f[::-1][:n-m+1] gR=g[:m][::-1][:n-m+1]+[0]*max(0,n-m+1-m) qR=convolution(fR,inverse(gR))[:n-m+1] q=qR[::-1] r=[(f[i]-x)%mod for i,x in enumerate(convolution(g,q)[:m-1])] while r and r[-1]==0: r.pop() else: q,r=[],f.copy() return q,r def multipoint_evaluation(f, x): n = len(x) sz = 1 << (n - 1).bit_length() g = [[1] for _ in range(2 * sz)] for i in range(n): g[i + sz] = [-x[i], 1] for i in range(1, sz)[::-1]: g[i] = convolution(g[2 * i],g[2 * i + 1]) g[1] =division_modulus(f,g[1])[1] for i in range(2, 2 * sz): g[i]=division_modulus(g[i>>1],g[i])[1] res = [g[i + sz][0] if g[i+sz] else 0 for i in range(n)] return res class Lagrange_Interpolation: def __init__(self,X=None,Y=None,x0=None,xd=None,mod=0): self.degree=len(Y)-1 self.mod=mod assert self.mod==0 or self.degree<self.mod if x0!=None and xd!=None: assert xd>0 if self.mod: self.X=[(x0+i*xd)%self.mod for i in range(self.degree+1)] fact_inve=1 for i in range(1,self.degree+1): fact_inve*=i*xd fact_inve%=self.mod fact_inve=MOD(self.mod).Pow(fact_inve,-1) self.coefficient=[y for y in Y] for i in range(self.degree-1,-1,-2): self.coefficient[i]*=-1 for i in range(self.degree,-1,-1): self.coefficient[i]*=fact_inve self.coefficient[i]%=self.mod self.coefficient[self.degree-i]*=fact_inve self.coefficient[self.degree-i]%=self.mod fact_inve*=i*xd fact_inve%=self.mod else: self.X=[x0+i*xd for i in range(self.degree+1)] self.coefficient=[y for y in Y] for i in range(self.degree-1,-1,-2): self.coefficient[i]*=-1 fact=1 for i in range(1,self.degree+2): self.coefficient[i-1]/=fact self.coefficient[self.degree-i+1]/=fact fact*=i*xd else: self.X=X assert len(self.X)==self.degree+1 self.coefficient=[1]*(self.degree+1) for i in range(self.degree+1): for j in range(self.degree+1): if i==j: continue self.coefficient[i]*=X[i]-X[j] if self.mod: self.coefficient[i]%=self.mod if self.mod: for i in range(self.degree+1): self.coefficient[i]=MOD(self.mod).Pow(self.coefficient[i],-1)*Y[i]%self.mod else: for i in range(self.degree+1): self.coefficient[i]=Y[i]/self.coefficient[i] def __call__(self,N): if self.mod: N%=self.mod XX=[N-x for x in self.X] XX_left=[1]*(self.degree+2) for i in range(1,self.degree+2): XX_left[i]=XX_left[i-1]*XX[i-1] if self.mod: XX_left[i]%=self.mod XX_right=[1]*(self.degree+2) for i in range(self.degree,-1,-1): XX_right[i]=XX_right[i+1]*XX[i] if self.mod: XX_right[i]%=self.mod if self.mod: return sum(XX_left[i]*XX_right[i+1]%self.mod*self.coefficient[i]%self.mod for i in range(self.degree+1))%self.mod else: return sum(XX_left[i]*XX_right[i+1]*self.coefficient[i] for i in range(self.degree+1)) N,a=map(int,readline().split()) X,Y=[],[] for _ in range(N): x,y=map(int,readline().split()) X.append(x) Y.append(y) mod=998244353 if a in X: i=X.index(a) LI=Lagrange_Interpolation([X[j] for j in range(N) if i!=j],[Y[j] for j in range(N) if i!=j],mod=mod) ans=(LI(a)+Y[i]*(N-1))%mod else: MD=MOD(mod) XX=[1]*N for i in range(N): for j in range(N): if i==j: continue XX[i]*=X[i]-X[j] XX[i]%=mod XX[i]=MD.Pow(XX[i],-1) A=1 for x in X: A*=a-x A%=mod inverse=[MD.Pow(a-x,-1) for x in X] ans=0 for i in range(N): for j in range(N): if i==j: continue ans+=A*inverse[i]%mod*inverse[j]%mod*Y[j]%mod*XX[j]%mod*(X[j]-X[i])%mod ans%=mod print(ans)