結果

問題 No.2290 UnUnion Find
ユーザー h-izuh-izu
提出日時 2023-05-11 02:53:25
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 338 ms / 2,000 ms
コード長 6,989 bytes
コンパイル時間 5,465 ms
コンパイル使用メモリ 293,168 KB
実行使用メモリ 13,440 KB
最終ジャッジ日時 2024-11-27 05:03:35
合計ジャッジ時間 22,114 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 46
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#ifdef __LOCAL
#define _GLIBCXX_DEBUG
#endif
#include <bits/stdc++.h>
#include <atcoder/all>
using namespace std;
using namespace atcoder;
typedef unsigned long long ull;
typedef long long ll;
const double PI = 3.14159265358979323846;
#define rep(i, n) for (ll i = 0; i < (ll)(n); i++)
// abab
// (true)
template <typename T>
bool chmax(T& a, const T& b) {
if (a < b) {
a = b; // ab
return true;
}
return false;
}
// abab
// (true)
template <typename T>
bool chmin(T& a, const T& b) {
if (a > b) {
a = b; // ab
return true;
}
return false;
}
// a^p
// 2^3 = 2 * 2^2
// 2^2 = 2 * (2^1)
// 2^1 = 2
ll powpow(ll a, ll p) {
if (p == 0) return 1;
if (p % 2 == 0) {
ll half = powpow(a, p / 2);
return half * half;
} else {
return a * powpow(a, p - 1);
}
}
class combination {
private:
ll N;
vector<vector<ll>> C;
public:
explicit combination(ll _n) : N(_n) {
C.resize(N + 1);
rep(i, N + 1) C[i].resize(N + 1);
C[0][0] = 1;
rep(i, N) rep(j, i + 1) {
C[i + 1][j + 1] += C[i][j];
C[i + 1][j] += C[i][j];
}
}
ll operator()(ll n, ll k) {
if (n < k) return 0;
if (n < 0 || k < 0) return 0;
return C[n][k];
}
};
// ref. https://drken1215.hatenablog.com/entry/2018/06/08/210000
class modcombination {
private:
ll mod;
vector<ll> fac, finv, inv;
public:
modcombination(ll n, ll _mod) : mod(_mod) {
fac.resize(n + 1);
finv.resize(n + 1);
inv.resize(n + 1);
fac[0] = fac[1] = 1;
finv[0] = finv[1] = 1;
inv[1] = 1;
for (ll i = 2; i <= n; i++) {
fac[i] = fac[i - 1] * i % mod;
inv[i] = mod - inv[mod % i] * (mod / i) % mod;
finv[i] = finv[i - 1] * inv[i] % mod;
}
}
ll operator()(ll n, ll k) {
if (n < k) return 0;
if (n < 0 || k < 0) return 0;
return fac[n] * (finv[k] * finv[n - k] % mod) % mod;
}
};
// cf. https://qiita.com/drken/items/a14e9af0ca2d857dad23
vector<ll> enum_divisors(ll n) {
vector<ll> res;
// sqrt(n)
for (ll i = 1; i * i <= n; i++) {
if (n % i == 0) {
res.push_back(i);
// in/i
// e.g. n=25i=5
if (n / i != i) res.push_back(n / i);
}
}
sort(res.begin(), res.end());
return res;
}
// cf. https://qiita.com/drken/items/a14e9af0ca2d857dad23
map<ll, ll> prime_factors(ll n) {
map<ll, ll> res;
// sqrt(n)
for (ll a = 2; a * a <= n; a++) {
if (n % a != 0) continue;
// n
while (n % a == 0) {
res[a]++;
n /= a;
}
}
if (n != 1) res[n]++;
return res;
}
// p/q
struct fraction {
ll p, q;
fraction(ll _p = 0, ll _q = 1) : p(_p), q(_q) {
if (q == 0) {
p = 1;
return;
}
if (q < 0) {
p = -p;
q = -q;
}
ll g = gcd(p, q);
p /= g;
q /= g;
}
bool operator<(const fraction& other) const {
return p * other.q < q * other.p;
}
bool operator<=(const fraction& other) const {
return p * other.q <= q * other.p;
}
bool operator==(const fraction& other) const {
return p == other.p && q == other.q;
}
};
// res[i][c] := i c index ( n)
vector<vector<ll>> calcNext(const string& S) {
ll n = (ll)S.size();
vector<vector<ll>> res(n + 1, vector<ll>(26, n));
for (ll i = n - 1; i >= 0; --i) {
for (ll j = 0; j < 26; ++j) res[i][j] = res[i + 1][j];
res[i][S[i] - 'a'] = i;
}
return res;
}
// ref. https://algo-logic.info/bridge-lowlink/
struct LowLink {
vector<vector<ll>> G;
vector<ll> ord, low;
vector<bool> visited;
vector<pair<ll, ll>> bridges;
explicit LowLink(const vector<vector<ll>>& _G) : G(_G) {
visited.resize(G.size(), false);
ord.resize(G.size(), 0);
low.resize(G.size(), 0);
ll k = 0;
rep(i, (ll)G.size()) {
if (visited[i]) continue;
k = dfs(i, k);
}
}
ll dfs(ll node, ll k, ll parent = -1) {
visited[node] = true;
ord[node] = k;
low[node] = k;
k++;
for (auto g : G[node]) {
if (!visited[g]) {
k = dfs(g, k, node);
low[node] = min(low[node], low[g]);
if (ord[node] < low[g]) {
bridges.emplace_back(node, g);
}
} else if (g != parent) {
low[node] = min(low[node], ord[g]);
}
}
return k;
}
};
// 3x3()
struct matrix {
vector<vector<ll>> a;
matrix(const vector<vector<ll>>& _a = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}})
: a(_a) {}
matrix operator*(const matrix& x) {
matrix res({{0, 0, 0}, {0, 0, 0}, {0, 0, 0}});
rep(i, 3) rep(j, 3) rep(k, 3) {
// cout << i << "," << j << " <- " << a[i][k] << "*" << x.a[k][j] << endl;
res.a[i][j] += a[i][k] * x.a[k][j];
}
return res;
}
vector<ll> operator*(const vector<ll>& x) {
matrix other({{x[0], 0, 0}, {x[1], 0, 0}, {1, 0, 0}});
auto res = *this * other;
return vector<ll>({res.a[0][0], res.a[1][0], res.a[2][0]});
}
};
ll inverse_number(const vector<ll>& a) {
ll n = a.size();
ll ret = 0;
fenwick_tree<ll> t(n);
rep(i, n) {
ret += t.sum(a[i] + 1, n);
t.add(a[i], 1);
}
return ret;
}
ll swap_distance(const vector<ll>& a, const vector<ll>& b) {
if (a.size() != b.size()) {
return -1;
}
ll n = a.size();
using P = pair<ll, ll>;
vector<P> _a(n), _b(n);
rep(i, n) {
_a[i] = {a[i], i};
_b[i] = {b[i], i};
}
sort(_a.begin(), _a.end());
sort(_b.begin(), _b.end());
vector<ll> p(n);
rep(i, n) {
auto [va, ai] = _a[i];
auto [vb, bi] = _b[i];
if (va != vb) {
return -1;
}
p[ai] = bi;
}
return inverse_number(p);
}
// {g,x,y}: ax+by = g
tuple<ll, ll, ll> extgcd(ll a, ll b) {
if (b == 0) {
return {a, 1, 0};
}
auto [g, x, y] = extgcd(b, a % b);
return {g, y, x - (a / b) * y};
}
int main() {
cin.tie(nullptr);
ios_base::sync_with_stdio(false);
cout << fixed << setprecision(15);
ll n, q;
cin >> n >> q;
dsu dsu(n);
set<ll> st;
rep(i, n) { st.insert(i); }
rep(_, q) {
ll query;
cin >> query;
if (query == 1) {
ll u, v;
cin >> u >> v;
u--;
v--;
if (dsu.same(u, v)) continue;
ll lu = dsu.leader(u);
ll lv = dsu.leader(v);
dsu.merge(lu, lv);
if (dsu.leader(lu) != lu) {
st.erase(lu);
}
if (dsu.leader(lv) != lv) {
st.erase(lv);
}
} else {
ll u;
cin >> u;
u--;
bool ok = false;
for (auto leader : st) {
if (leader != dsu.leader(u)) {
cout << leader + 1 << endl;
ok = true;
break;
}
}
if (!ok) {
cout << -1 << endl;
}
}
}
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0