結果
問題 | No.2292 Interval Union Find |
ユーザー | 👑 p-adic |
提出日時 | 2023-05-12 10:53:26 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 17,780 bytes |
コンパイル時間 | 6,051 ms |
コンパイル使用メモリ | 246,840 KB |
実行使用メモリ | 64,384 KB |
最終ジャッジ日時 | 2024-05-06 01:45:50 |
合計ジャッジ時間 | 48,592 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 3 ms
5,248 KB |
testcase_01 | AC | 5 ms
5,248 KB |
testcase_02 | AC | 4 ms
5,376 KB |
testcase_03 | AC | 4 ms
5,376 KB |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | AC | 423 ms
50,304 KB |
testcase_19 | AC | 876 ms
64,384 KB |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | WA | - |
testcase_29 | WA | - |
testcase_30 | WA | - |
testcase_31 | WA | - |
testcase_32 | WA | - |
testcase_33 | WA | - |
testcase_34 | WA | - |
testcase_35 | WA | - |
testcase_36 | WA | - |
testcase_37 | WA | - |
testcase_38 | WA | - |
testcase_39 | WA | - |
testcase_40 | WA | - |
testcase_41 | AC | 63 ms
8,320 KB |
testcase_42 | AC | 68 ms
8,064 KB |
testcase_43 | AC | 78 ms
8,192 KB |
testcase_44 | AC | 156 ms
8,192 KB |
testcase_45 | WA | - |
testcase_46 | WA | - |
testcase_47 | WA | - |
ソースコード
#pragma GCC optimize ( "O3" ) #pragma GCC optimize( "unroll-loops" ) #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) #include <bits/stdc++.h> using namespace std; using ll = long long; #define TYPE_OF( VAR ) remove_const<remove_reference<decltype( VAR )>::type >::type #define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ) #define CEXPR( LL , BOUND , VALUE ) constexpr const LL BOUND = VALUE #define CIN( LL , A ) LL A; cin >> A #define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) ) #define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX ) #define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) #define FOR_ITR( ARRAY , ITR , END ) for( auto ITR = ARRAY .begin() , END = ARRAY .end() ; ITR != END ; ITR ++ ) #define QUIT return 0 #define COUT( ANSWER ) cout << ( ANSWER ) << "\n" template <int N> class SqrtCalculation { public: int m_val; inline constexpr SqrtCalculation(); }; template <int N> inline constexpr SqrtCalculation<N>::SqrtCalculation() : m_val( 1 ) { int m_val2 = 1; while( ( m_val2 << 2 ) <= N ){ m_val <<= 1; m_val2 <<= 2; } while( m_val2 < N ){ m_val++; m_val2 = m_val * m_val; } } #define TEMPLATE_ARGUMENTS_FOR_LAZY_SQRT_DECOMPOSITION typename T , T m_T(const T&,const T&) , const T& e_T() , typename U , U m_U(const U&,const U&) , const U& e_U() , U o_U(const T&,const U&) , int N , int N_sqrt // (結合的とも単位的とも可換とも限らない)基点付きマグマ(T,m_T:T^2->T,e_T:1->T)と // (可換とは限らない)モノイド(U,m_U:U^2->U,e_U:1->U)と // 基点が恒等変換に対応するT作用(o_U:T×U->U)と非負整数Nをパラメータとする。 // e_Uによる初期化O(N) // 配列による初期化O(N) // 一点取得O(1) // 区間積取得O(min(i_final-i_start+1,N^{1/2}))(Uのモノイド性を使う) // 一点更新O(N^{1/2})(区間更新とオーダーは同じだが定数倍良い) // 1つの代入値による区間更新O(N^{1/2}) // o_Uによる一点更新はなし。 // o_Uによる区間更新O(N^{1/2}) template <TEMPLATE_ARGUMENTS_FOR_LAZY_SQRT_DECOMPOSITION = SqrtCalculation<N>{}.m_val > class LazySqrtDecomposition { // private: public: static constexpr const int N_d = ( N + N_sqrt - 1 ) / N_sqrt; static constexpr const int N_m = N_d * N_sqrt; U m_a[N_m]; U m_b[N_d]; U m_lazy_substitution[N_d]; bool m_suspended[N_d]; T m_lazy_action[N_d]; public: static const T& g_e_T; static const U& g_e_U; inline constexpr LazySqrtDecomposition(); inline constexpr LazySqrtDecomposition( const U ( &a )[N] ); inline constexpr U Get( const int& i ) const; inline constexpr U IntervalProd( const int& i_start , const int& i_final ) const; inline constexpr void Set( const int& i , const U& u ); inline constexpr void IntervalSet( const int& i_start , const int& i_final , const U& u ); inline constexpr void IntervalAct( const int& i_start , const int& i_final , const T& t ); static inline constexpr U Power( const U& u , int exponent ); private: inline constexpr U IntervalProd_Body( const int& i_min , const int& i_ulim ) const; inline constexpr void SetProd( const int& i ); inline constexpr void SolveSuspendedSubstitution( const int& d , const U& u ); inline constexpr void IntervalSet_Body( const int& i_min , const int& i_ulim , const U& t ); inline constexpr void SolveSuspendedAction( const int& d ); inline constexpr void IntervalAct_Body( const int& i_min , const int& i_ulim , const T& t ); }; template <TEMPLATE_ARGUMENTS_FOR_LAZY_SQRT_DECOMPOSITION> const T& LazySqrtDecomposition<T,m_T,e_T,U,m_U,e_U,o_U,N,N_sqrt>::g_e_T = e_T(); template <TEMPLATE_ARGUMENTS_FOR_LAZY_SQRT_DECOMPOSITION> const U& LazySqrtDecomposition<T,m_T,e_T,U,m_U,e_U,o_U,N,N_sqrt>::g_e_U = e_U(); template <TEMPLATE_ARGUMENTS_FOR_LAZY_SQRT_DECOMPOSITION> inline constexpr LazySqrtDecomposition<T,m_T,e_T,U,m_U,e_U,o_U,N,N_sqrt>::LazySqrtDecomposition() : m_a() , m_b() , m_lazy_substitution() , m_suspended() , m_lazy_action() { if( m_a[0] != g_e_U ){ for( int d = 0 ; d < N_d ; d++ ){ m_b[d] = m_lazy_substitution[d] = g_e_U; m_suspended[d] = true; } } if( m_lazy_action[0] != g_e_T ){ for( int d = 0 ; d < N_d ; d++ ){ m_lazy_action[d] = g_e_T; } } } template <TEMPLATE_ARGUMENTS_FOR_LAZY_SQRT_DECOMPOSITION> inline constexpr LazySqrtDecomposition<T,m_T,e_T,U,m_U,e_U,o_U,N,N_sqrt>::LazySqrtDecomposition( const U ( &a )[N] ) : m_a() , m_b() , m_lazy_substitution() , m_suspended() , m_lazy_action() { int i = 0; while( i < N ){ m_a[i] = a[i]; i++; } while( i < N_m ){ m_a[i] = g_e_U; i++; } i = 0; for( int d = 0 ; d < N_d ; d++ ){ U& m_bd = m_b[d] = g_e_U; for( int j = 0 ; j < N_sqrt ; j++ ){ m_bd = m_U( m_bd , m_a[i] ); i++; } } if( m_lazy_action[0] != g_e_T ){ for( int d = 0 ; d < N_d ; d++ ){ m_lazy_action[d] = g_e_T; } } } template <TEMPLATE_ARGUMENTS_FOR_LAZY_SQRT_DECOMPOSITION> inline constexpr U LazySqrtDecomposition<T,m_T,e_T,U,m_U,e_U,o_U,N,N_sqrt>::Get( const int& i ) const { const int d = i / N_sqrt; return m_suspended[d] ? m_lazy_substitution[d] : o_U( m_lazy_action[d] , m_a[i] ); } template <TEMPLATE_ARGUMENTS_FOR_LAZY_SQRT_DECOMPOSITION> inline constexpr U LazySqrtDecomposition<T,m_T,e_T,U,m_U,e_U,o_U,N,N_sqrt>::IntervalProd( const int& i_start , const int& i_final ) const { const int i_min = max( i_start , 0 ); const int i_ulim = min( i_final + 1 , N ); const int d_0 = ( i_min + N_sqrt - 1 ) / N_sqrt; const int d_1 = max( d_0 , i_ulim / N_sqrt ); const int i_0 = min( d_0 * N_sqrt , i_ulim ) ; const int i_1 = max( i_0 , d_1 * N_sqrt ); U answer = g_e_U; if( i_min < i_0 ){ // この時d_0 > 0になる。 answer = m_suspended[d_0-1] ? Power( m_lazy_substitution[d_0-1] , i_0 - i_min ) : o_U( m_lazy_action[d_0-1] , IntervalProd_Body( i_min , i_0 ) ); } for( int d = d_0 ; d < d_1 ; d++ ){ answer = m_U( answer , o_U( m_lazy_action[d] , m_b[d] ) ); } if( i_1 < i_ulim ){ // この時d_1 < N_dになる。 answer = m_U( answer , m_suspended[d_1] ? Power( m_lazy_substitution[d_1] , i_ulim - i_1 ) : o_U( m_lazy_action[d_1] , IntervalProd_Body( i_1 , i_ulim ) ) ); } return answer; } template <TEMPLATE_ARGUMENTS_FOR_LAZY_SQRT_DECOMPOSITION> inline constexpr void LazySqrtDecomposition<T,m_T,e_T,U,m_U,e_U,o_U,N,N_sqrt>::Set( const int& i , const U& u ) { const int d = i / N_sqrt; const int i_min = d * N_sqrt; const int i_ulim = i_min + N_sqrt; U& m_ai = m_a[i]; if( m_suspended[d] ){ U& m_lazy_substitution_d = m_lazy_substitution[d]; if( m_lazy_substitution_d != u ){ SolveSuspendedSubstitution( d , m_lazy_substitution_d ); m_ai = u; m_b[d] = m_T( m_T( Power( m_lazy_substitution_d , i - i_min ) , u ) , Power( m_lazy_substitution_d , i_ulim - ( i + 1 ) ) ); } } else { SolveSuspendedAction( d ); if( m_ai != u ){ m_ai = u; SetProd( d ); } } return; } template <TEMPLATE_ARGUMENTS_FOR_LAZY_SQRT_DECOMPOSITION> inline constexpr void LazySqrtDecomposition<T,m_T,e_T,U,m_U,e_U,o_U,N,N_sqrt>::IntervalSet( const int& i_start , const int& i_final , const U& u ) { const int i_min = max( i_start , 0 ); const int i_ulim = min( i_final + 1 , N ); const int d_0 = ( i_min + N_sqrt - 1 ) / N_sqrt; const int d_1 = max( d_0 , i_ulim / N_sqrt ); const int d_0_N_sqrt = d_0 * N_sqrt; const int d_1_N_sqrt = d_1 * N_sqrt; const int i_0 = min( d_0_N_sqrt , i_ulim ); const int i_1 = max( i_0 , d_1_N_sqrt ); if( i_min < i_0 ){ // この時d_0 > 0になる。 const int d_0_minus = d_0 - 1; const int d_0_N_sqrt_minus = d_0_N_sqrt - N_sqrt; U& m_bd = m_b[d_0_minus]; if( m_suspended[d_0_minus] ){ U& m_lazy_substitution_d = m_lazy_substitution[d_0_minus]; SolveSuspendedSubstitution( d_0_minus , m_lazy_substitution_d ); IntervalSet_Body( i_min , i_0 , u ); m_bd = m_U( m_U( Power( m_lazy_substitution_d , i_min - d_0_N_sqrt_minus ) , Power( u , i_0 - i_min ) ) , Power( m_lazy_substitution_d , d_0_N_sqrt - i_0 ) ); } else { SolveSuspendedAction( d_0 ); IntervalSet_Body( i_min , i_0 , u ); m_bd = m_U( m_U( IntervalProd_Body( d_0_N_sqrt_minus , i_min ) , Power( u , i_0 - i_min ) ) , IntervalProd_Body( d_0_N_sqrt , i_0 ) ); } } const U power = Power( u , N_sqrt ); for( int d = d_0 ; d < d_1 ; d++ ){ m_b[d] = power; m_lazy_substitution[d] = u; m_suspended[d] = true; m_lazy_action[d] = g_e_T; } if( i_1 < i_ulim ){ // この時d_1 < N_dになる。 const int d_1_N_sqrt_plus = d_1_N_sqrt + N_sqrt; U& m_bd = m_b[d_1]; if( m_suspended[d_1] ){ U& m_lazy_substitution_d = m_lazy_substitution[d_1]; SolveSuspendedSubstitution( d_1 , m_lazy_substitution_d ); IntervalSet_Body( i_1 , i_ulim , u ); m_bd = m_U( m_U( Power( m_lazy_substitution_d , i_1 - d_1_N_sqrt ) , Power( u , i_ulim - i_1 ) ) , Power( m_lazy_substitution_d , d_1_N_sqrt_plus - i_ulim ) ); } else { SolveSuspendedAction( d_1 ); m_bd = m_U( m_U( IntervalProd_Body( d_1_N_sqrt , i_1 ) , Power( u , i_ulim - i_1 ) ) , IntervalProd_Body( d_1_N_sqrt_plus , i_1 ) ); } } return; } template <TEMPLATE_ARGUMENTS_FOR_LAZY_SQRT_DECOMPOSITION> inline constexpr void LazySqrtDecomposition<T,m_T,e_T,U,m_U,e_U,o_U,N,N_sqrt>::IntervalAct( const int& i_start , const int& i_final , const T& t ) { if( t != g_e_T ){ const int i_min = max( i_start , 0 ); const int i_ulim = min( i_final + 1 , N ); const int d_0 = ( i_min + N_sqrt - 1 ) / N_sqrt; const int d_1 = max( d_0 , i_ulim / N_sqrt ); const int d_0_N_sqrt = d_0 * N_sqrt; const int d_1_N_sqrt = d_1 * N_sqrt; const int i_0 = min( d_0_N_sqrt , i_ulim ); const int i_1 = max( i_0 , d_1_N_sqrt ); if( i_min < i_0 ){ // この時d_0 > 0になる。 const int d_0_minus = d_0 - 1; const int d_0_N_sqrt_minus = d_0_N_sqrt - N_sqrt; U& m_bd = m_b[d_0_minus]; if( m_suspended[d_0_minus] ){ U& m_lazy_substitution_d = m_lazy_substitution[d_0_minus]; const U u = o_U( t , m_lazy_substitution_d ); SolveSuspendedSubstitution( d_0_minus , m_lazy_substitution_d ); IntervalSet_Body( i_min , i_0 , u ); m_bd = m_U( m_U( Power( m_lazy_substitution_d , i_min - d_0_N_sqrt_minus ) , Power( u , i_0 - i_min ) ) , Power( m_lazy_substitution , d_0_N_sqrt - i_0 ) ); } else { T& m_lazy_action_d = m_lazy_action[d_0_minus]; if( m_lazy_action_d == g_e_T ){ IntervalAct_Body( i_min , i_0 , t ); } else { IntervalAct_Body( d_0_N_sqrt_minus , i_min , m_lazy_action_d ); IntervalAct_Body( i_min , i_0 , m_T( t , m_lazy_action_d ) ); IntervalAct_Body( i_0 , d_0_N_sqrt , m_lazy_action_d ); m_lazy_action_d = g_e_T; } SetProd( d_0_minus ); } } for( int d = d_0 ; d < d_1 ; d++ ){ if( m_suspended[d] ){ U& m_lazy_substitution_d = m_lazy_substitution[d]; m_lazy_substitution_d = o_U( t , m_lazy_substitution_d ); } else { T& m_lazy_action_d = m_lazy_action[d]; m_lazy_action_d = m_T( t , m_lazy_action_d ); } } if( i_1 < i_ulim ){ // この時d_1 < N_dになる。 const int d_1_N_sqrt_plus = d_1_N_sqrt + N_sqrt; U& m_bd = m_b[d_1]; if( m_suspended[d_1] ){ U& m_lazy_substitution_d = m_lazy_substitution[d_1]; const U u = o_U( t , m_lazy_substitution_d ); SolveSuspendedSubstitution( d_1 , m_lazy_substitution_d ); IntervalSet_Body( i_1 , i_ulim , u ); m_bd = m_U( m_U( Power( m_lazy_substitution_d , i_1 - d_1_N_sqrt ) , Power( u , i_ulim - i_1 ) ) , Power( m_lazy_substitution , d_1_N_sqrt_plus - i_ulim ) ); } else { T& m_lazy_action_d = m_lazy_action[d_1]; if( m_lazy_action_d == g_e_T ){ IntervalAct_Body( i_1 , i_ulim , t ); SetProd( d_1 ); } else { IntervalAct_Body( d_1_N_sqrt , i_1 , m_lazy_action_d ); IntervalAct_Body( i_1 , i_ulim , m_T( t , m_lazy_action_d ) ); IntervalAct_Body( i_ulim , d_1_N_sqrt_plus , m_lazy_action_d ); m_lazy_action_d = g_e_T; SetProd( d_1 ); } } } } return; } template <TEMPLATE_ARGUMENTS_FOR_LAZY_SQRT_DECOMPOSITION> inline constexpr U LazySqrtDecomposition<T,m_T,e_T,U,m_U,e_U,o_U,N,N_sqrt>::Power( const U& u , int exponent ) { U answer = g_e_U; if( u != g_e_U ){ U power = u; while( exponent > 0 ){ answer = ( exponent & 1 ) == 0 ? answer : m_U( answer , power ); power = m_U( power , power ); exponent >>= 1; } } return answer; } template <TEMPLATE_ARGUMENTS_FOR_LAZY_SQRT_DECOMPOSITION> inline constexpr U LazySqrtDecomposition<T,m_T,e_T,U,m_U,e_U,o_U,N,N_sqrt>::IntervalProd_Body( const int& i_min , const int& i_ulim ) const { U answer = g_e_U; for( int i = i_min ; i < i_ulim ; i++ ){ answer = m_U( answer , m_a[i] ); } return answer; } template <TEMPLATE_ARGUMENTS_FOR_LAZY_SQRT_DECOMPOSITION> inline constexpr void LazySqrtDecomposition<T,m_T,e_T,U,m_U,e_U,o_U,N,N_sqrt>::SetProd( const int& d ) { U& m_bd = m_b[d] = g_e_U; const int i_min = d * N_sqrt; const int i_ulim = i_min + N_sqrt; for( int i = i_min ; i < i_ulim ; i++ ){ m_bd = m_U( m_bd , m_a[i] ); } return; } template <TEMPLATE_ARGUMENTS_FOR_LAZY_SQRT_DECOMPOSITION> inline constexpr void LazySqrtDecomposition<T,m_T,e_T,U,m_U,e_U,o_U,N,N_sqrt>::SolveSuspendedSubstitution( const int& d , const U& u ) { const int i_min = d * N_sqrt; IntervalSet_Body( i_min , i_min + N_sqrt , u ); m_suspended[d] = false; return; } template <TEMPLATE_ARGUMENTS_FOR_LAZY_SQRT_DECOMPOSITION> inline constexpr void LazySqrtDecomposition<T,m_T,e_T,U,m_U,e_U,o_U,N,N_sqrt>::IntervalSet_Body( const int& i_min , const int& i_ulim , const U& u ) { for( int i = i_min ; i < i_ulim ; i++ ){ m_a[i] = u; } return; } template <TEMPLATE_ARGUMENTS_FOR_LAZY_SQRT_DECOMPOSITION> inline constexpr void LazySqrtDecomposition<T,m_T,e_T,U,m_U,e_U,o_U,N,N_sqrt>::SolveSuspendedAction( const int& d ) { T& m_lazy_action_d = m_lazy_action[d]; if( m_lazy_action_d != g_e_T ){ const int i_min = d * N_sqrt; const int i_ulim = i_min + N_sqrt; IntervalAct_Body( i_min , i_ulim , m_lazy_action_d ); U& m_bd = m_b[d]; m_bd = o_U( m_lazy_action_d , m_bd ); m_lazy_action_d = g_e_T; } return; } template <TEMPLATE_ARGUMENTS_FOR_LAZY_SQRT_DECOMPOSITION> inline constexpr void LazySqrtDecomposition<T,m_T,e_T,U,m_U,e_U,o_U,N,N_sqrt>::IntervalAct_Body( const int& i_min , const int& i_ulim , const T& t ) { for( int i = i_min ; i < i_ulim ; i++ ){ U& m_ai = m_a[i]; m_ai = o_U( t , m_ai ); } return; } inline bool m( const bool& b0 , const bool& b1 ) { return b0 && b1; } inline const bool& e() { static const bool b{ true }; return b; } inline const bool& o( const bool& b0 , const bool& b1 ) { return b1; } int main() { UNTIE; CEXPR( ll , bound_N , 1000000000 ); CIN_ASSERT( N , 2 , bound_N ); CEXPR( int , bound_Q , 200000 ); CIN_ASSERT( Q , 1 , bound_Q ); map<ll,int> TheAt{}; static int type[bound_Q]; static ll L[bound_Q]; static ll R[bound_Q]; FOR( q , 0 , Q ){ CIN_ASSERT( type_q , 1 , 4 ); type[q] = type_q; if( type_q < 3 ){ CIN_ASSERT( L_q , 1 , N ); CIN_ASSERT( R_q , L_q + 1 , N ); L[q] = L_q; R[q] = R_q - 1; TheAt[L_q-1]; TheAt[L_q]; TheAt[R_q-1]; TheAt[R_q]; } else if( type_q == 3 ){ CIN_ASSERT( L_q , 1 , N ); CIN_ASSERT( R_q , 1 , N ); if( L_q > R_q ){ swap( L_q , R_q ); } L[q] = L_q; R[q] = R_q - 1; TheAt[L_q]; TheAt[R_q - 1]; } else { CIN_ASSERT( L_q , 1 , N ); L[q] = L_q; TheAt[L_q]; } } TheAt[1]; TheAt[N]; int size = 0; static ll TheAtInv[bound_Q * 4]; FOR_ITR( TheAt , itr , end ){ TheAtInv[size] = itr->first; itr->second = size++; } CEXPR( int , bound_size , bound_Q * 4 + 2 ); constexpr int N_sqrt = SqrtCalculation<bound_size>().m_val; // 座標圧縮された点が右隣と同一連結成分に属すか否かを管理。作用は使わない。 static LazySqrtDecomposition<bool,m,e,bool,m,e,m,bound_size,N_sqrt> X{}; X.IntervalSet( 0 , bound_size - 1 , false ); FOR( q , 0 , Q ){ int& type_q = type[q]; if( type_q == 1 ){ X.IntervalSet( TheAt[L[q]] , TheAt[R[q]] , true ); } else if( type_q == 2 ){ X.IntervalSet( TheAt[L[q]] , TheAt[R[q]] , false ); } else if( type_q == 3 ){ COUT( X.IntervalProd( TheAt[L[q]] , TheAt[R[q]] ) ? 1 : 0 ); } else { int i = TheAt[L[q]]; int d = i / N_sqrt; int d_min = d; int i_min = d_min * N_sqrt; int d_max = d_min + 1; int i_max = i_min + N_sqrt; if( X.IntervalProd( i_min , i - 1 ) ){ while( d_min > 0 ? X.IntervalProd( i_min - N_sqrt , i_min - 1 ) : false ){ i_min -= N_sqrt; d_min--; } if( d_min > 0 ){ while( X.Get( i_min - 1 ) ){ i_min--; } } } else { i_min = i; while( X.Get( i_min - 1 ) ){ i_min--; } } if( X.IntervalProd( i , i_max - 1 ) ){ while( d_max < X.N_d ? X.IntervalProd( i_max , i_max + N_sqrt - 1 ) : false ){ i_max += N_sqrt; d_max++; } if( d_max < X.N_d ){ while( X.Get( i_max ) ){ i_max++; } } } else { i_max = i; while( X.Get( i_max ) ){ i_max++; } } COUT( ( i_max < size ? TheAtInv[i_max] : N ) - TheAtInv[i_min] + 1 ); } } QUIT; }