結果
| 問題 |
No.2303 Frog on Grid
|
| コンテスト | |
| ユーザー |
ei1333333
|
| 提出日時 | 2023-05-12 21:52:07 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 125 ms / 2,000 ms |
| コード長 | 12,914 bytes |
| コンパイル時間 | 2,552 ms |
| コンパイル使用メモリ | 208,692 KB |
| 最終ジャッジ日時 | 2025-02-12 22:33:43 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 20 |
ソースコード
#include<bits/stdc++.h>
using namespace std;
using int64 = long long;
// const int mod = 1e9 + 7;
const int mod = 998244353;
const int64 infll = (1LL << 62) - 1;
const int inf = (1 << 30) - 1;
/*
struct IoSetup {
IoSetup() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(10);
cerr << fixed << setprecision(10);
}
} iosetup;
*/
template< typename T1, typename T2 >
ostream &operator<<(ostream &os, const pair< T1, T2 > &p) {
os << p.first << " " << p.second;
return os;
}
template< typename T1, typename T2 >
istream &operator>>(istream &is, pair< T1, T2 > &p) {
is >> p.first >> p.second;
return is;
}
template< typename T >
ostream &operator<<(ostream &os, const vector< T > &v) {
for (int i = 0; i < (int) v.size(); i++) {
os << v[i] << (i + 1 != v.size() ? " " : "");
}
return os;
}
template< typename T >
istream &operator>>(istream &is, vector< T > &v) {
for (T &in: v) is >> in;
return is;
}
template< typename T1, typename T2 >
inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }
template< typename T1, typename T2 >
inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }
template< typename T = int64 >
vector< T > make_v(size_t a) {
return vector< T >(a);
}
template< typename T, typename... Ts >
auto make_v(size_t a, Ts... ts) {
return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));
}
template< typename T, typename V >
typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {
t = v;
}
template< typename T, typename V >
typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {
for (auto &e: t) fill_v(e, v);
}
template< typename F >
struct FixPoint: F {
FixPoint(F &&f): F(forward< F >(f)) {}
template< typename... Args >
decltype(auto) operator()(Args &&... args) const {
return F::operator()(*this, forward< Args >(args)...);
}
};
template< typename F >
inline decltype(auto) MFP(F &&f) {
return FixPoint< F >{forward< F >(f)};
}
#line 1 "math/combinatorics/montgomery-mod-int.hpp"
/**
* @brief Montgomery ModInt
*/
template< uint32_t mod, bool fast = false >
struct MontgomeryModInt {
using mint = MontgomeryModInt;
using i32 = int32_t;
using i64 = int64_t;
using u32 = uint32_t;
using u64 = uint64_t;
static constexpr u32 get_r() {
u32 ret = mod;
for (i32 i = 0; i < 4; i++) ret *= 2 - mod * ret;
return ret;
}
static constexpr u32 r = get_r();
static constexpr u32 n2 = -u64(mod) % mod;
static_assert(r * mod == 1, "invalid, r * mod != 1");
static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");
u32 x;
MontgomeryModInt(): x{} {}
MontgomeryModInt(const i64 &a)
: x(reduce(u64(fast ? a : (a % mod + mod)) * n2)) {}
static constexpr u32 reduce(const u64 &b) {
return u32(b >> 32) + mod - u32((u64(u32(b) * r) * mod) >> 32);
}
mint &operator+=(const mint &p) {
if (i32(x += p.x - 2 * mod) < 0) x += 2 * mod;
return *this;
}
mint &operator-=(const mint &p) {
if (i32(x -= p.x) < 0) x += 2 * mod;
return *this;
}
mint &operator*=(const mint &p) {
x = reduce(u64(x) * p.x);
return *this;
}
mint &operator/=(const mint &p) {
*this *= p.inverse();
return *this;
}
mint operator-() const { return mint() - *this; }
mint operator+(const mint &p) const { return mint(*this) += p; }
mint operator-(const mint &p) const { return mint(*this) -= p; }
mint operator*(const mint &p) const { return mint(*this) *= p; }
mint operator/(const mint &p) const { return mint(*this) /= p; }
bool operator==(const mint &p) const { return (x >= mod ? x - mod : x) == (p.x >= mod ? p.x - mod : p.x); }
bool operator!=(const mint &p) const { return (x >= mod ? x - mod : x) != (p.x >= mod ? p.x - mod : p.x); }
u32 get() const {
u32 ret = reduce(x);
return ret >= mod ? ret - mod : ret;
}
mint pow(u64 n) const {
mint ret(1), mul(*this);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
mint inverse() const {
return pow(mod - 2);
}
friend ostream &operator<<(ostream &os, const mint &p) {
return os << p.get();
}
friend istream &operator>>(istream &is, mint &a) {
i64 t;
is >> t;
a = mint(t);
return is;
}
static u32 get_mod() { return mod; }
};
using modint = MontgomeryModInt< mod >;
#line 1 "math/combinatorics/enumeration.hpp"
/**
* @brief Enumeration(組み合わせ)
*/
template< typename T >
struct Enumeration {
private:
static vector< T > _fact, _finv, _inv;
inline static void expand(size_t sz) {
if (_fact.size() < sz + 1) {
int pre_sz = max(1, (int) _fact.size());
_fact.resize(sz + 1, T(1));
_finv.resize(sz + 1, T(1));
_inv.resize(sz + 1, T(1));
for (int i = pre_sz; i <= (int) sz; i++) {
_fact[i] = _fact[i - 1] * T(i);
}
_finv[sz] = T(1) / _fact[sz];
for (int i = (int) sz - 1; i >= pre_sz; i--) {
_finv[i] = _finv[i + 1] * T(i + 1);
}
for (int i = pre_sz; i <= (int) sz; i++) {
_inv[i] = _finv[i] * _fact[i - 1];
}
}
}
public:
explicit Enumeration(size_t sz = 0) { expand(sz); }
static inline T fact(int k) {
expand(k);
return _fact[k];
}
static inline T finv(int k) {
expand(k);
return _finv[k];
}
static inline T inv(int k) {
expand(k);
return _inv[k];
}
static T P(int n, int r) {
if (r < 0 || n < r) return 0;
return fact(n) * finv(n - r);
}
static T C(int p, int q) {
if (q < 0 || p < q) return 0;
return fact(p) * finv(q) * finv(p - q);
}
static T H(int n, int r) {
if (n < 0 || r < 0) return 0;
return r == 0 ? 1 : C(n + r - 1, r);
}
};
template< typename T >
vector< T > Enumeration< T >::_fact = vector< T >();
template< typename T >
vector< T > Enumeration< T >::_finv = vector< T >();
template< typename T >
vector< T > Enumeration< T >::_inv = vector< T >();
#line 1 "math/fft/number-theoretic-transform-friendly-mod-int.hpp"
/**
* @brief Number Theoretic Transform Friendly ModInt
*/
template< typename Mint >
struct NumberTheoreticTransformFriendlyModInt {
static vector< Mint > roots, iroots, rate3, irate3;
static int max_base;
NumberTheoreticTransformFriendlyModInt() = default;
static void init() {
if (roots.empty()) {
const unsigned mod = Mint::get_mod();
assert(mod >= 3 && mod % 2 == 1);
auto tmp = mod - 1;
max_base = 0;
while (tmp % 2 == 0) tmp >>= 1, max_base++;
Mint root = 2;
while (root.pow((mod - 1) >> 1) == 1) {
root += 1;
}
assert(root.pow(mod - 1) == 1);
roots.resize(max_base + 1);
iroots.resize(max_base + 1);
rate3.resize(max_base + 1);
irate3.resize(max_base + 1);
roots[max_base] = root.pow((mod - 1) >> max_base);
iroots[max_base] = Mint(1) / roots[max_base];
for (int i = max_base - 1; i >= 0; i--) {
roots[i] = roots[i + 1] * roots[i + 1];
iroots[i] = iroots[i + 1] * iroots[i + 1];
}
{
Mint prod = 1, iprod = 1;
for (int i = 0; i <= max_base - 3; i++) {
rate3[i] = roots[i + 3] * prod;
irate3[i] = iroots[i + 3] * iprod;
prod *= iroots[i + 3];
iprod *= roots[i + 3];
}
}
}
}
static void ntt(vector< Mint > &a) {
init();
const int n = (int) a.size();
assert((n & (n - 1)) == 0);
int h = __builtin_ctz(n);
assert(h <= max_base);
int len = 0;
Mint imag = roots[2];
if (h & 1) {
int p = 1 << (h - 1);
Mint rot = 1;
for (int i = 0; i < p; i++) {
auto r = a[i + p];
a[i + p] = a[i] - r;
a[i] += r;
}
len++;
}
for (; len + 1 < h; len += 2) {
int p = 1 << (h - len - 2);
{ // s = 0
for (int i = 0; i < p; i++) {
auto a0 = a[i];
auto a1 = a[i + p];
auto a2 = a[i + 2 * p];
auto a3 = a[i + 3 * p];
auto a1na3imag = (a1 - a3) * imag;
auto a0a2 = a0 + a2;
auto a1a3 = a1 + a3;
auto a0na2 = a0 - a2;
a[i] = a0a2 + a1a3;
a[i + 1 * p] = a0a2 - a1a3;
a[i + 2 * p] = a0na2 + a1na3imag;
a[i + 3 * p] = a0na2 - a1na3imag;
}
}
Mint rot = rate3[0];
for (int s = 1; s < (1 << len); s++) {
int offset = s << (h - len);
Mint rot2 = rot * rot;
Mint rot3 = rot2 * rot;
for (int i = 0; i < p; i++) {
auto a0 = a[i + offset];
auto a1 = a[i + offset + p] * rot;
auto a2 = a[i + offset + 2 * p] * rot2;
auto a3 = a[i + offset + 3 * p] * rot3;
auto a1na3imag = (a1 - a3) * imag;
auto a0a2 = a0 + a2;
auto a1a3 = a1 + a3;
auto a0na2 = a0 - a2;
a[i + offset] = a0a2 + a1a3;
a[i + offset + 1 * p] = a0a2 - a1a3;
a[i + offset + 2 * p] = a0na2 + a1na3imag;
a[i + offset + 3 * p] = a0na2 - a1na3imag;
}
rot *= rate3[__builtin_ctz(~s)];
}
}
}
static void intt(vector< Mint > &a, bool f = true) {
init();
const int n = (int) a.size();
assert((n & (n - 1)) == 0);
int h = __builtin_ctz(n);
assert(h <= max_base);
int len = h;
Mint iimag = iroots[2];
for (; len > 1; len -= 2) {
int p = 1 << (h - len);
{ // s = 0
for (int i = 0; i < p; i++) {
auto a0 = a[i];
auto a1 = a[i + 1 * p];
auto a2 = a[i + 2 * p];
auto a3 = a[i + 3 * p];
auto a2na3iimag = (a2 - a3) * iimag;
auto a0na1 = a0 - a1;
auto a0a1 = a0 + a1;
auto a2a3 = a2 + a3;
a[i] = a0a1 + a2a3;
a[i + 1 * p] = (a0na1 + a2na3iimag);
a[i + 2 * p] = (a0a1 - a2a3);
a[i + 3 * p] = (a0na1 - a2na3iimag);
}
}
Mint irot = irate3[0];
for (int s = 1; s < (1 << (len - 2)); s++) {
int offset = s << (h - len + 2);
Mint irot2 = irot * irot;
Mint irot3 = irot2 * irot;
for (int i = 0; i < p; i++) {
auto a0 = a[i + offset];
auto a1 = a[i + offset + 1 * p];
auto a2 = a[i + offset + 2 * p];
auto a3 = a[i + offset + 3 * p];
auto a2na3iimag = (a2 - a3) * iimag;
auto a0na1 = a0 - a1;
auto a0a1 = a0 + a1;
auto a2a3 = a2 + a3;
a[i + offset] = a0a1 + a2a3;
a[i + offset + 1 * p] = (a0na1 + a2na3iimag) * irot;
a[i + offset + 2 * p] = (a0a1 - a2a3) * irot2;
a[i + offset + 3 * p] = (a0na1 - a2na3iimag) * irot3;
}
irot *= irate3[__builtin_ctz(~s)];
}
}
if (len >= 1) {
int p = 1 << (h - 1);
for (int i = 0; i < p; i++) {
auto ajp = a[i] - a[i + p];
a[i] += a[i + p];
a[i + p] = ajp;
}
}
if (f) {
Mint inv_sz = Mint(1) / n;
for (int i = 0; i < n; i++) a[i] *= inv_sz;
}
}
static vector< Mint > multiply(vector< Mint > a, vector< Mint > b) {
int need = a.size() + b.size() - 1;
int nbase = 1;
while ((1 << nbase) < need) nbase++;
int sz = 1 << nbase;
a.resize(sz, 0);
b.resize(sz, 0);
ntt(a);
ntt(b);
Mint inv_sz = Mint(1) / sz;
for (int i = 0; i < sz; i++) a[i] *= b[i] * inv_sz;
intt(a, false);
a.resize(need);
return a;
}
};
template< typename Mint >
vector< Mint > NumberTheoreticTransformFriendlyModInt< Mint >::roots = vector< Mint >();
template< typename Mint >
vector< Mint > NumberTheoreticTransformFriendlyModInt< Mint >::iroots = vector< Mint >();
template< typename Mint >
vector< Mint > NumberTheoreticTransformFriendlyModInt< Mint >::rate3 = vector< Mint >();
template< typename Mint >
vector< Mint > NumberTheoreticTransformFriendlyModInt< Mint >::irate3 = vector< Mint >();
template< typename Mint >
int NumberTheoreticTransformFriendlyModInt< Mint >::max_base = 0;
int main() {
int H, W;
cin >> H >> W;
vector< modint > f(H + 1);
for (int i = 1; i <= H; i++) {
// x+y=i
// x+2y=H
int x = -H + 2 * i;
int y = H - i;
if (0 <= x and 0 <= y) {
f[i] = Enumeration< modint >::C(x + y, x);
}
f[i] *= Enumeration< modint >::finv(i);
}
vector< modint > g(W + 1);
for (int i = 1; i <= W; i++) {
// x+y=i
// x+2y=H
int x = -W + 2 * i;
int y = W - i;
if (0 <= x and 0 <= y) {
g[i] = Enumeration< modint >::C(x + y, x);
}
g[i] *= Enumeration< modint >::finv(i);
}
auto v = NumberTheoreticTransformFriendlyModInt< modint >::multiply(f, g);
modint ret = 0;
for (int i = 1; i < v.size(); i++) {
ret += Enumeration< modint >::fact(i) * v[i];
}
cout << ret << "\n";
}
ei1333333