結果
問題 | No.2303 Frog on Grid |
ユーザー |
![]() |
提出日時 | 2023-05-12 21:57:21 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 57 ms / 2,000 ms |
コード長 | 15,496 bytes |
コンパイル時間 | 1,268 ms |
コンパイル使用メモリ | 135,096 KB |
最終ジャッジ日時 | 2025-02-12 22:41:08 |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 20 |
ソースコード
#ifndef LOCAL#define FAST_IO#endif// ============#include <algorithm>#include <array>#include <bitset>#include <cassert>#include <cmath>#include <iomanip>#include <iostream>#include <list>#include <map>#include <numeric>#include <queue>#include <random>#include <set>#include <stack>#include <string>#include <tuple>#include <unordered_map>#include <unordered_set>#include <utility>#include <vector>#define OVERRIDE(a, b, c, d, ...) d#define REP2(i, n) for (i32 i = 0; i < (i32)(n); ++i)#define REP3(i, m, n) for (i32 i = (i32)(m); i < (i32)(n); ++i)#define REP(...) OVERRIDE(__VA_ARGS__, REP3, REP2)(__VA_ARGS__)#define PER(i, n) for (i32 i = (i32)(n) - 1; i >= 0; --i)#define ALL(x) begin(x), end(x)using namespace std;using u32 = unsigned int;using u64 = unsigned long long;using i32 = signed int;using i64 = signed long long;using f64 = double;using f80 = long double;template <typename T>using Vec = vector<T>;template <typename T>bool chmin(T &x, const T &y) {if (x > y) {x = y;return true;}return false;}template <typename T>bool chmax(T &x, const T &y) {if (x < y) {x = y;return true;}return false;}template <typename T>Vec<tuple<i32, i32, T>> runlength(const Vec<T> &a) {if (a.empty()) {return Vec<tuple<i32, i32, T>>();}Vec<tuple<i32, i32, T>> ret;i32 prv = 0;REP(i, 1, a.size()) {if (a[i - 1] != a[i]) {ret.emplace_back(prv, i, a[i - 1]);prv = i;}}ret.emplace_back(prv, (i32)a.size(), a.back());return ret;}#ifdef INT128using u128 = __uint128_t;using i128 = __int128_t;istream &operator>>(istream &is, i128 &x) {i64 v;is >> v;x = v;return is;}ostream &operator<<(ostream &os, i128 x) {os << (i64)x;return os;}istream &operator>>(istream &is, u128 &x) {u64 v;is >> v;x = v;return is;}ostream &operator<<(ostream &os, u128 x) {os << (u64)x;return os;}#endif[[maybe_unused]] constexpr i32 INF = 1000000100;[[maybe_unused]] constexpr i64 INF64 = 3000000000000000100;struct SetUpIO {SetUpIO() {#ifdef FAST_IOios::sync_with_stdio(false);cin.tie(nullptr);#endifcout << fixed << setprecision(15);}} set_up_io;// ============#ifdef DEBUGF#else#define DBG(x) (void)0#endif// ============#include <cassert>#include <iostream>#include <type_traits>// ============constexpr bool is_prime(unsigned n) {if (n == 0 || n == 1) {return false;}for (unsigned i = 2; i * i <= n; ++i) {if (n % i == 0) {return false;}}return true;}constexpr unsigned mod_pow(unsigned x, unsigned y, unsigned mod) {unsigned ret = 1, self = x;while (y != 0) {if (y & 1) {ret = (unsigned) ((unsigned long long) ret * self % mod);}self = (unsigned) ((unsigned long long) self * self % mod);y /= 2;}return ret;}template <unsigned mod>constexpr unsigned primitive_root() {static_assert(is_prime(mod), "`mod` must be a prime number.");if (mod == 2) {return 1;}unsigned primes[32] = {};int it = 0;{unsigned m = mod - 1;for (unsigned i = 2; i * i <= m; ++i) {if (m % i == 0) {primes[it++] = i;while (m % i == 0) {m /= i;}}}if (m != 1) {primes[it++] = m;}}for (unsigned i = 2; i < mod; ++i) {bool ok = true;for (int j = 0; j < it; ++j) {if (mod_pow(i, (mod - 1) / primes[j], mod) == 1) {ok = false;break;}}if (ok)return i;}return 0;}// y >= 1template <typename T>constexpr T safe_mod(T x, T y) {x %= y;if (x < 0) {x += y;}return x;}// y != 0template <typename T>constexpr T floor_div(T x, T y) {if (y < 0) {x *= -1;y *= -1;}if (x >= 0) {return x / y;} else {return -((-x + y - 1) / y);}}// y != 0template <typename T>constexpr T ceil_div(T x, T y) {if (y < 0) {x *= -1;y *= -1;}if (x >= 0) {return (x + y - 1) / y;} else {return -(-x / y);}}// ============template <unsigned mod>class ModInt {static_assert(mod != 0, "`mod` must not be equal to 0.");static_assert(mod < (1u << 31),"`mod` must be less than (1u << 31) = 2147483648.");unsigned val;public:static constexpr unsigned get_mod() {return mod;}constexpr ModInt() : val(0) {}template <typename T, std::enable_if_t<std::is_signed_v<T>> * = nullptr>constexpr ModInt(T x) : val((unsigned) ((long long) x % (long long) mod + (x < 0 ? mod : 0))) {}template <typename T, std::enable_if_t<std::is_unsigned_v<T>> * = nullptr>constexpr ModInt(T x) : val((unsigned) (x % mod)) {}static constexpr ModInt raw(unsigned x) {ModInt<mod> ret;ret.val = x;return ret;}constexpr unsigned get_val() const {return val;}constexpr ModInt operator+() const {return *this;}constexpr ModInt operator-() const {return ModInt<mod>(0u) - *this;}constexpr ModInt &operator+=(const ModInt &rhs) {val += rhs.val;if (val >= mod)val -= mod;return *this;}constexpr ModInt &operator-=(const ModInt &rhs) {if (val < rhs.val)val += mod;val -= rhs.val;return *this;}constexpr ModInt &operator*=(const ModInt &rhs) {val = (unsigned long long)val * rhs.val % mod;return *this;}constexpr ModInt &operator/=(const ModInt &rhs) {val = (unsigned long long)val * rhs.inv().val % mod;return *this;}friend constexpr ModInt operator+(const ModInt &lhs, const ModInt &rhs) {return ModInt<mod>(lhs) += rhs;}friend constexpr ModInt operator-(const ModInt &lhs, const ModInt &rhs) {return ModInt<mod>(lhs) -= rhs;}friend constexpr ModInt operator*(const ModInt &lhs, const ModInt &rhs) {return ModInt<mod>(lhs) *= rhs;}friend constexpr ModInt operator/(const ModInt &lhs, const ModInt &rhs) {return ModInt<mod>(lhs) /= rhs;}constexpr ModInt pow(unsigned long long x) const {ModInt<mod> ret = ModInt<mod>::raw(1);ModInt<mod> self = *this;while (x != 0) {if (x & 1)ret *= self;self *= self;x >>= 1;}return ret;}constexpr ModInt inv() const {static_assert(is_prime(mod), "`mod` must be a prime number.");assert(val != 0);return this->pow(mod - 2);}friend std::istream &operator>>(std::istream &is, ModInt<mod> &x) {long long val;is >> val;x.val = val % mod + (val < 0 ? mod : 0);return is;}friend std::ostream &operator<<(std::ostream &os, const ModInt<mod> &x) {os << x.val;return os;}friend bool operator==(const ModInt &lhs, const ModInt &rhs) {return lhs.val == rhs.val;}friend bool operator!=(const ModInt &lhs, const ModInt &rhs) {return lhs.val != rhs.val;}};[[maybe_unused]] constexpr unsigned mod998244353 = 998244353;[[maybe_unused]] constexpr unsigned mod1000000007 = 1000000007;// ============// ============#include <vector>#include <cassert>template <typename T>class FactorialTable {std::vector<T> fac;std::vector<T> ifac;public:FactorialTable() : fac(1, T(1)), ifac(1, T(1)) {}FactorialTable(int n) : fac(n + 1), ifac(n + 1) {assert(n >= 0);fac[0] = T(1);for (int i = 1; i <= n; ++i) {fac[i] = fac[i - 1] * T(i);}ifac[n] = T(1) / T(fac[n]);for (int i = n; i > 0; --i) {ifac[i - 1] = ifac[i] * T(i);}}void resize(int n) {int old = n_max();if (n <= old) {return;}fac.resize(n + 1);for (int i = old + 1; i <= n; ++i) {fac[i] = fac[i - 1] * T(i);}ifac.resize(n + 1);ifac[n] = T(1) / T(fac[n]);for (int i = n; i > old; --i) {ifac[i - 1] = ifac[i] * T(i);}}inline int n_max() const {return (int) fac.size() - 1;}inline T fact(int n) const {assert(n >= 0 && n <= n_max());return fac[n];}inline T inv_fact(int n) const {assert(n >= 0 && n <= n_max());return ifac[n];}inline T choose(int n, int k) const {assert(k <= n_max() && n <= n_max());if (k > n || k < 0) {return T(0);}return fac[n] * ifac[k] * ifac[n - k];}inline T multi_choose(int n, int k) const {assert(n >= 1 && k >= 0 && k + n - 1 <= n_max());return choose(k + n - 1, k);}inline T n_terms_sum_k(int n, int k) const {assert(n >= 0);if (k < 0) {return T(0);}if (n == 0) {return k == 0 ? T(1) : T(0);}return choose(n + k - 1, n - 1);}};// ============// ============#include <array>#include <vector>// ============// ============// ============template <typename T, typename U>bool ith_bit(T n, U i) {return (n & ((T) 1 << i)) != 0;}int popcount(int x) {return __builtin_popcount(x);}unsigned popcount(unsigned x) {return __builtin_popcount(x);}long long popcount(long long x) {return __builtin_popcountll(x);}unsigned long long popcount(unsigned long long x) {return __builtin_popcountll(x);}// x must not be 0int clz(int x) {return __builtin_clz(x);}unsigned clz(unsigned x) {return __builtin_clz(x);}long long clz(long long x) {return __builtin_clzll(x);}unsigned long long clz(unsigned long long x) {return __builtin_clzll(x);}// x must not be 0int ctz(int x) {return __builtin_ctz(x);}unsigned ctz(unsigned int x) {return __builtin_ctz(x);}long long ctz(long long x) {return __builtin_ctzll(x);}unsigned long long ctz(unsigned long long x) {return __builtin_ctzll(x);}int floor_log2(int x) {return 31 - clz(x);}unsigned floor_log2(unsigned x) {return 31 - clz(x);}long long floor_log2(long long x) {return 63 - clz(x);}unsigned long long floor_log2(unsigned long long x) {return 63 - clz(x);}template <typename T>T mask_n(T x, T n) {T mask = ((T) 1 << n) - 1;return x & mask;}// ============template <unsigned mod>class NumberTheoreticTransform {static constexpr int calc_ex() {unsigned m = mod - 1;int ret = 0;while (!(m & 1)) {m >>= 1;++ret;}return ret;}static constexpr int max_ex = calc_ex();std::array<ModInt<mod>, max_ex + 1> root;std::array<ModInt<mod>, max_ex + 1> inv_root;std::array<ModInt<mod>, max_ex + 2> inc;std::array<ModInt<mod>, max_ex + 2> inv_inc;public:void dft(std::vector<ModInt<mod>> &a) const {int n = (int) a.size();int ex = ctz(n);for (int i = 0; i < ex; ++i) {int pr = 1 << (ex - 1 - i);int len = 1 << i;ModInt<mod> zeta(1);for (int j = 0; j < len; ++j) {int offset = j << (ex - i);for (int k = 0; k < pr; ++k) {ModInt<mod> l = a[offset + k];ModInt<mod> r = a[offset + k + pr] * zeta;a[offset + k] = l + r;a[offset + k + pr] = l - r;}zeta *= inc[ctz(~j)];}}}void idft(std::vector<ModInt<mod>> &a) const {int n = (int) a.size();int ex = ctz(n);for (int i = ex - 1; i >= 0; --i) {int pr = 1 << (ex - 1 - i);int len = 1 << i;ModInt<mod> zeta(1);for (int j = 0; j < len; ++j) {int offset = j << (ex - i);for (int k = 0; k < pr; ++k) {ModInt<mod> l = a[offset + k];ModInt<mod> r = a[offset + k + pr];a[offset + k] = l + r;a[offset + k + pr] = (l - r) * zeta;}zeta *= inv_inc[ctz(~j)];}}ModInt<mod> inv = ModInt<mod>::raw((unsigned) a.size()).inv();for (ModInt<mod> &ele : a) {ele *= inv;}}constexpr NumberTheoreticTransform() : root(), inv_root() {ModInt<mod> g = ModInt<mod>::raw(primitive_root<mod>()).pow((mod - 1) >> max_ex);root[max_ex] = g;inv_root[max_ex] = g.inv();for (int i = max_ex; i > 0; --i) {root[i - 1] = root[i] * root[i];inv_root[i - 1] = inv_root[i] * inv_root[i];}ModInt<mod> prod(1);for (int i = 2; i <= max_ex; ++i) {inc[i - 2] = root[i] * prod;prod *= inv_root[i];}prod = ModInt<mod>(1);for (int i = 2; i <= max_ex; ++i) {inv_inc[i - 2] = inv_root[i] * prod;prod *= root[i];}}std::vector<ModInt<mod>> multiply(std::vector<ModInt<mod>> a,std::vector<ModInt<mod>> b) const {if (a.empty() || b.empty())return std::vector<ModInt<mod>>();int siz = 1;int s = (int) (a.size() + b.size());while (siz < s) {siz <<= 1;}a.resize(siz, ModInt<mod>());b.resize(siz, ModInt<mod>());dft(a);dft(b);for (int i = 0; i < siz; ++i) {a[i] *= b[i];}idft(a);a.resize(s - 1);return a;}};template <unsigned mod>class NTTMul {static constexpr NumberTheoreticTransform<mod> ntt = NumberTheoreticTransform<mod>();public:static void dft(std::vector<ModInt<mod>> &a) {ntt.dft(a);}static void idft(std::vector<ModInt<mod>> &a) {ntt.idft(a);}static std::vector<ModInt<mod>> mul(std::vector<ModInt<mod>> lhs,std::vector<ModInt<mod>> rhs) {return ntt.multiply(std::move(lhs), std::move(rhs));}};// ============using Mint = ModInt<mod998244353>;constexpr NumberTheoreticTransform<mod998244353> NTT;int main() {i32 h, w;cin >> h >> w;FactorialTable<Mint> table(h + w);const auto mk = [&](i32 n) -> Vec<Mint> {Vec<Mint> m(n + 1);REP(i, n + 1) {if (2 * i < n) {continue;}m[i] = table.choose(i, n - i);}REP(i, n + 1) {m[i] *= table.inv_fact(i);}return m;};Vec<Mint> a = mk(h);Vec<Mint> b = mk(w);Vec<Mint> c = NTT.multiply(a, b);Mint ans;REP(i, c.size()) {ans += c[i] * table.fact(i);}cout << ans << '\n';}