結果
問題 | No.2303 Frog on Grid |
ユーザー | Forested |
提出日時 | 2023-05-12 21:57:21 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 64 ms / 2,000 ms |
コード長 | 15,496 bytes |
コンパイル時間 | 1,628 ms |
コンパイル使用メモリ | 140,040 KB |
実行使用メモリ | 12,868 KB |
最終ジャッジ日時 | 2024-11-28 18:12:58 |
合計ジャッジ時間 | 3,178 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 60 ms
11,696 KB |
testcase_03 | AC | 31 ms
7,104 KB |
testcase_04 | AC | 60 ms
11,264 KB |
testcase_05 | AC | 62 ms
12,024 KB |
testcase_06 | AC | 30 ms
7,444 KB |
testcase_07 | AC | 60 ms
11,064 KB |
testcase_08 | AC | 61 ms
11,212 KB |
testcase_09 | AC | 16 ms
6,816 KB |
testcase_10 | AC | 30 ms
6,852 KB |
testcase_11 | AC | 16 ms
6,816 KB |
testcase_12 | AC | 32 ms
7,880 KB |
testcase_13 | AC | 2 ms
6,816 KB |
testcase_14 | AC | 2 ms
6,820 KB |
testcase_15 | AC | 2 ms
6,816 KB |
testcase_16 | AC | 2 ms
6,816 KB |
testcase_17 | AC | 2 ms
6,816 KB |
testcase_18 | AC | 64 ms
12,744 KB |
testcase_19 | AC | 63 ms
12,740 KB |
testcase_20 | AC | 63 ms
12,868 KB |
testcase_21 | AC | 63 ms
12,868 KB |
testcase_22 | AC | 63 ms
12,748 KB |
ソースコード
#ifndef LOCAL #define FAST_IO #endif // ============ #include <algorithm> #include <array> #include <bitset> #include <cassert> #include <cmath> #include <iomanip> #include <iostream> #include <list> #include <map> #include <numeric> #include <queue> #include <random> #include <set> #include <stack> #include <string> #include <tuple> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> #define OVERRIDE(a, b, c, d, ...) d #define REP2(i, n) for (i32 i = 0; i < (i32)(n); ++i) #define REP3(i, m, n) for (i32 i = (i32)(m); i < (i32)(n); ++i) #define REP(...) OVERRIDE(__VA_ARGS__, REP3, REP2)(__VA_ARGS__) #define PER(i, n) for (i32 i = (i32)(n) - 1; i >= 0; --i) #define ALL(x) begin(x), end(x) using namespace std; using u32 = unsigned int; using u64 = unsigned long long; using i32 = signed int; using i64 = signed long long; using f64 = double; using f80 = long double; template <typename T> using Vec = vector<T>; template <typename T> bool chmin(T &x, const T &y) { if (x > y) { x = y; return true; } return false; } template <typename T> bool chmax(T &x, const T &y) { if (x < y) { x = y; return true; } return false; } template <typename T> Vec<tuple<i32, i32, T>> runlength(const Vec<T> &a) { if (a.empty()) { return Vec<tuple<i32, i32, T>>(); } Vec<tuple<i32, i32, T>> ret; i32 prv = 0; REP(i, 1, a.size()) { if (a[i - 1] != a[i]) { ret.emplace_back(prv, i, a[i - 1]); prv = i; } } ret.emplace_back(prv, (i32)a.size(), a.back()); return ret; } #ifdef INT128 using u128 = __uint128_t; using i128 = __int128_t; istream &operator>>(istream &is, i128 &x) { i64 v; is >> v; x = v; return is; } ostream &operator<<(ostream &os, i128 x) { os << (i64)x; return os; } istream &operator>>(istream &is, u128 &x) { u64 v; is >> v; x = v; return is; } ostream &operator<<(ostream &os, u128 x) { os << (u64)x; return os; } #endif [[maybe_unused]] constexpr i32 INF = 1000000100; [[maybe_unused]] constexpr i64 INF64 = 3000000000000000100; struct SetUpIO { SetUpIO() { #ifdef FAST_IO ios::sync_with_stdio(false); cin.tie(nullptr); #endif cout << fixed << setprecision(15); } } set_up_io; // ============ #ifdef DEBUGF #else #define DBG(x) (void)0 #endif // ============ #include <cassert> #include <iostream> #include <type_traits> // ============ constexpr bool is_prime(unsigned n) { if (n == 0 || n == 1) { return false; } for (unsigned i = 2; i * i <= n; ++i) { if (n % i == 0) { return false; } } return true; } constexpr unsigned mod_pow(unsigned x, unsigned y, unsigned mod) { unsigned ret = 1, self = x; while (y != 0) { if (y & 1) { ret = (unsigned) ((unsigned long long) ret * self % mod); } self = (unsigned) ((unsigned long long) self * self % mod); y /= 2; } return ret; } template <unsigned mod> constexpr unsigned primitive_root() { static_assert(is_prime(mod), "`mod` must be a prime number."); if (mod == 2) { return 1; } unsigned primes[32] = {}; int it = 0; { unsigned m = mod - 1; for (unsigned i = 2; i * i <= m; ++i) { if (m % i == 0) { primes[it++] = i; while (m % i == 0) { m /= i; } } } if (m != 1) { primes[it++] = m; } } for (unsigned i = 2; i < mod; ++i) { bool ok = true; for (int j = 0; j < it; ++j) { if (mod_pow(i, (mod - 1) / primes[j], mod) == 1) { ok = false; break; } } if (ok) return i; } return 0; } // y >= 1 template <typename T> constexpr T safe_mod(T x, T y) { x %= y; if (x < 0) { x += y; } return x; } // y != 0 template <typename T> constexpr T floor_div(T x, T y) { if (y < 0) { x *= -1; y *= -1; } if (x >= 0) { return x / y; } else { return -((-x + y - 1) / y); } } // y != 0 template <typename T> constexpr T ceil_div(T x, T y) { if (y < 0) { x *= -1; y *= -1; } if (x >= 0) { return (x + y - 1) / y; } else { return -(-x / y); } } // ============ template <unsigned mod> class ModInt { static_assert(mod != 0, "`mod` must not be equal to 0."); static_assert( mod < (1u << 31), "`mod` must be less than (1u << 31) = 2147483648."); unsigned val; public: static constexpr unsigned get_mod() { return mod; } constexpr ModInt() : val(0) {} template <typename T, std::enable_if_t<std::is_signed_v<T>> * = nullptr> constexpr ModInt(T x) : val((unsigned) ((long long) x % (long long) mod + (x < 0 ? mod : 0))) {} template <typename T, std::enable_if_t<std::is_unsigned_v<T>> * = nullptr> constexpr ModInt(T x) : val((unsigned) (x % mod)) {} static constexpr ModInt raw(unsigned x) { ModInt<mod> ret; ret.val = x; return ret; } constexpr unsigned get_val() const { return val; } constexpr ModInt operator+() const { return *this; } constexpr ModInt operator-() const { return ModInt<mod>(0u) - *this; } constexpr ModInt &operator+=(const ModInt &rhs) { val += rhs.val; if (val >= mod) val -= mod; return *this; } constexpr ModInt &operator-=(const ModInt &rhs) { if (val < rhs.val) val += mod; val -= rhs.val; return *this; } constexpr ModInt &operator*=(const ModInt &rhs) { val = (unsigned long long)val * rhs.val % mod; return *this; } constexpr ModInt &operator/=(const ModInt &rhs) { val = (unsigned long long)val * rhs.inv().val % mod; return *this; } friend constexpr ModInt operator+(const ModInt &lhs, const ModInt &rhs) { return ModInt<mod>(lhs) += rhs; } friend constexpr ModInt operator-(const ModInt &lhs, const ModInt &rhs) { return ModInt<mod>(lhs) -= rhs; } friend constexpr ModInt operator*(const ModInt &lhs, const ModInt &rhs) { return ModInt<mod>(lhs) *= rhs; } friend constexpr ModInt operator/(const ModInt &lhs, const ModInt &rhs) { return ModInt<mod>(lhs) /= rhs; } constexpr ModInt pow(unsigned long long x) const { ModInt<mod> ret = ModInt<mod>::raw(1); ModInt<mod> self = *this; while (x != 0) { if (x & 1) ret *= self; self *= self; x >>= 1; } return ret; } constexpr ModInt inv() const { static_assert(is_prime(mod), "`mod` must be a prime number."); assert(val != 0); return this->pow(mod - 2); } friend std::istream &operator>>(std::istream &is, ModInt<mod> &x) { long long val; is >> val; x.val = val % mod + (val < 0 ? mod : 0); return is; } friend std::ostream &operator<<(std::ostream &os, const ModInt<mod> &x) { os << x.val; return os; } friend bool operator==(const ModInt &lhs, const ModInt &rhs) { return lhs.val == rhs.val; } friend bool operator!=(const ModInt &lhs, const ModInt &rhs) { return lhs.val != rhs.val; } }; [[maybe_unused]] constexpr unsigned mod998244353 = 998244353; [[maybe_unused]] constexpr unsigned mod1000000007 = 1000000007; // ============ // ============ #include <vector> #include <cassert> template <typename T> class FactorialTable { std::vector<T> fac; std::vector<T> ifac; public: FactorialTable() : fac(1, T(1)), ifac(1, T(1)) {} FactorialTable(int n) : fac(n + 1), ifac(n + 1) { assert(n >= 0); fac[0] = T(1); for (int i = 1; i <= n; ++i) { fac[i] = fac[i - 1] * T(i); } ifac[n] = T(1) / T(fac[n]); for (int i = n; i > 0; --i) { ifac[i - 1] = ifac[i] * T(i); } } void resize(int n) { int old = n_max(); if (n <= old) { return; } fac.resize(n + 1); for (int i = old + 1; i <= n; ++i) { fac[i] = fac[i - 1] * T(i); } ifac.resize(n + 1); ifac[n] = T(1) / T(fac[n]); for (int i = n; i > old; --i) { ifac[i - 1] = ifac[i] * T(i); } } inline int n_max() const { return (int) fac.size() - 1; } inline T fact(int n) const { assert(n >= 0 && n <= n_max()); return fac[n]; } inline T inv_fact(int n) const { assert(n >= 0 && n <= n_max()); return ifac[n]; } inline T choose(int n, int k) const { assert(k <= n_max() && n <= n_max()); if (k > n || k < 0) { return T(0); } return fac[n] * ifac[k] * ifac[n - k]; } inline T multi_choose(int n, int k) const { assert(n >= 1 && k >= 0 && k + n - 1 <= n_max()); return choose(k + n - 1, k); } inline T n_terms_sum_k(int n, int k) const { assert(n >= 0); if (k < 0) { return T(0); } if (n == 0) { return k == 0 ? T(1) : T(0); } return choose(n + k - 1, n - 1); } }; // ============ // ============ #include <array> #include <vector> // ============ // ============ // ============ template <typename T, typename U> bool ith_bit(T n, U i) { return (n & ((T) 1 << i)) != 0; } int popcount(int x) { return __builtin_popcount(x); } unsigned popcount(unsigned x) { return __builtin_popcount(x); } long long popcount(long long x) { return __builtin_popcountll(x); } unsigned long long popcount(unsigned long long x) { return __builtin_popcountll(x); } // x must not be 0 int clz(int x) { return __builtin_clz(x); } unsigned clz(unsigned x) { return __builtin_clz(x); } long long clz(long long x) { return __builtin_clzll(x); } unsigned long long clz(unsigned long long x) { return __builtin_clzll(x); } // x must not be 0 int ctz(int x) { return __builtin_ctz(x); } unsigned ctz(unsigned int x) { return __builtin_ctz(x); } long long ctz(long long x) { return __builtin_ctzll(x); } unsigned long long ctz(unsigned long long x) { return __builtin_ctzll(x); } int floor_log2(int x) { return 31 - clz(x); } unsigned floor_log2(unsigned x) { return 31 - clz(x); } long long floor_log2(long long x) { return 63 - clz(x); } unsigned long long floor_log2(unsigned long long x) { return 63 - clz(x); } template <typename T> T mask_n(T x, T n) { T mask = ((T) 1 << n) - 1; return x & mask; } // ============ template <unsigned mod> class NumberTheoreticTransform { static constexpr int calc_ex() { unsigned m = mod - 1; int ret = 0; while (!(m & 1)) { m >>= 1; ++ret; } return ret; } static constexpr int max_ex = calc_ex(); std::array<ModInt<mod>, max_ex + 1> root; std::array<ModInt<mod>, max_ex + 1> inv_root; std::array<ModInt<mod>, max_ex + 2> inc; std::array<ModInt<mod>, max_ex + 2> inv_inc; public: void dft(std::vector<ModInt<mod>> &a) const { int n = (int) a.size(); int ex = ctz(n); for (int i = 0; i < ex; ++i) { int pr = 1 << (ex - 1 - i); int len = 1 << i; ModInt<mod> zeta(1); for (int j = 0; j < len; ++j) { int offset = j << (ex - i); for (int k = 0; k < pr; ++k) { ModInt<mod> l = a[offset + k]; ModInt<mod> r = a[offset + k + pr] * zeta; a[offset + k] = l + r; a[offset + k + pr] = l - r; } zeta *= inc[ctz(~j)]; } } } void idft(std::vector<ModInt<mod>> &a) const { int n = (int) a.size(); int ex = ctz(n); for (int i = ex - 1; i >= 0; --i) { int pr = 1 << (ex - 1 - i); int len = 1 << i; ModInt<mod> zeta(1); for (int j = 0; j < len; ++j) { int offset = j << (ex - i); for (int k = 0; k < pr; ++k) { ModInt<mod> l = a[offset + k]; ModInt<mod> r = a[offset + k + pr]; a[offset + k] = l + r; a[offset + k + pr] = (l - r) * zeta; } zeta *= inv_inc[ctz(~j)]; } } ModInt<mod> inv = ModInt<mod>::raw((unsigned) a.size()).inv(); for (ModInt<mod> &ele : a) { ele *= inv; } } constexpr NumberTheoreticTransform() : root(), inv_root() { ModInt<mod> g = ModInt<mod>::raw(primitive_root<mod>()).pow((mod - 1) >> max_ex); root[max_ex] = g; inv_root[max_ex] = g.inv(); for (int i = max_ex; i > 0; --i) { root[i - 1] = root[i] * root[i]; inv_root[i - 1] = inv_root[i] * inv_root[i]; } ModInt<mod> prod(1); for (int i = 2; i <= max_ex; ++i) { inc[i - 2] = root[i] * prod; prod *= inv_root[i]; } prod = ModInt<mod>(1); for (int i = 2; i <= max_ex; ++i) { inv_inc[i - 2] = inv_root[i] * prod; prod *= root[i]; } } std::vector<ModInt<mod>> multiply( std::vector<ModInt<mod>> a, std::vector<ModInt<mod>> b) const { if (a.empty() || b.empty()) return std::vector<ModInt<mod>>(); int siz = 1; int s = (int) (a.size() + b.size()); while (siz < s) { siz <<= 1; } a.resize(siz, ModInt<mod>()); b.resize(siz, ModInt<mod>()); dft(a); dft(b); for (int i = 0; i < siz; ++i) { a[i] *= b[i]; } idft(a); a.resize(s - 1); return a; } }; template <unsigned mod> class NTTMul { static constexpr NumberTheoreticTransform<mod> ntt = NumberTheoreticTransform<mod>(); public: static void dft(std::vector<ModInt<mod>> &a) { ntt.dft(a); } static void idft(std::vector<ModInt<mod>> &a) { ntt.idft(a); } static std::vector<ModInt<mod>> mul( std::vector<ModInt<mod>> lhs, std::vector<ModInt<mod>> rhs) { return ntt.multiply(std::move(lhs), std::move(rhs)); } }; // ============ using Mint = ModInt<mod998244353>; constexpr NumberTheoreticTransform<mod998244353> NTT; int main() { i32 h, w; cin >> h >> w; FactorialTable<Mint> table(h + w); const auto mk = [&](i32 n) -> Vec<Mint> { Vec<Mint> m(n + 1); REP(i, n + 1) { if (2 * i < n) { continue; } m[i] = table.choose(i, n - i); } REP(i, n + 1) { m[i] *= table.inv_fact(i); } return m; }; Vec<Mint> a = mk(h); Vec<Mint> b = mk(w); Vec<Mint> c = NTT.multiply(a, b); Mint ans; REP(i, c.size()) { ans += c[i] * table.fact(i); } cout << ans << '\n'; }