結果

問題 No.2300 Substring OR Sum
ユーザー 👑 p-adicp-adic
提出日時 2023-05-12 22:44:27
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
RE  
実行時間 -
コード長 12,244 bytes
コンパイル時間 3,234 ms
コンパイル使用メモリ 221,920 KB
実行使用メモリ 8,440 KB
最終ジャッジ日時 2024-11-28 19:19:15
合計ジャッジ時間 5,363 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 3 ms
6,820 KB
testcase_01 AC 3 ms
6,816 KB
testcase_02 AC 3 ms
6,820 KB
testcase_03 AC 29 ms
6,816 KB
testcase_04 AC 25 ms
6,816 KB
testcase_05 AC 30 ms
6,816 KB
testcase_06 AC 16 ms
6,820 KB
testcase_07 AC 98 ms
6,820 KB
testcase_08 AC 43 ms
6,816 KB
testcase_09 AC 32 ms
6,816 KB
testcase_10 AC 80 ms
6,816 KB
testcase_11 AC 91 ms
6,820 KB
testcase_12 AC 98 ms
6,816 KB
testcase_13 AC 29 ms
6,816 KB
testcase_14 AC 82 ms
8,440 KB
testcase_15 AC 45 ms
6,820 KB
testcase_16 AC 80 ms
6,816 KB
testcase_17 AC 97 ms
6,816 KB
testcase_18 RE -
testcase_19 RE -
testcase_20 AC 3 ms
6,816 KB
testcase_21 AC 3 ms
6,820 KB
testcase_22 AC 3 ms
6,820 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC optimize ( "O3" )
#pragma GCC optimize( "unroll-loops" )
#pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
#include <bits/stdc++.h>
using namespace std;

using ll = long long;
using uint = unsigned int;

#define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) )
#define TYPE_OF( VAR ) remove_const<remove_reference<decltype( VAR )>::type >::type
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE
#define CIN( LL , A ) LL A; cin >> A
#define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) )
#define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX )
#define GETLINE( A ) string A; getline( cin , A )
#define GETLINE_SEPARATE( A , SEPARATOR ) string A; getline( cin , A , SEPARATOR )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- )
#define FOR_ITR( ARRAY , ITR , END ) for( auto ITR = ARRAY .begin() , END = ARRAY .end() ; ITR != END ; ITR ++ )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES )
#define QUIT return 0
#define COUT( ANSWER ) cout << ( ANSWER ) << "\n"
#define RETURN( ANSWER ) COUT( ANSWER ); QUIT
#define SET_PRECISION( PRECISION ) cout << fixed << setprecision( PRECISION )
#define DOUBLE( PRECISION , ANSWER ) SET_PRECISION << ( ANSWER ) << "\n"; QUIT

template <typename T> inline T Absolute( const T& a ){ return a > 0 ? a : -a; }
template <typename T> inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : ( a % p ) + p; }

// ARGUMENTの型がintやuintでないように注意
#define POWER( ANSWER , ARGUMENT , EXPONENT )				\
  TYPE_OF( ARGUMENT ) ANSWER{ 1 };					\
  {									\
    TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT );	\
    TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT );	\
    while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){			\
      if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){			\
	ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER;			\
      }									\
      ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER;	\
      EXPONENT_FOR_SQUARE_FOR_POWER /= 2;				\
    }									\
  }									\

#define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO )		\
  ll ANSWER{ 1 };							\
  {									\
    ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( MODULO + ( ( ARGUMENT ) % MODULO ) ) % MODULO; \
    TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT );	\
    while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){			\
      if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){			\
	ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO;	\
      }									\
      ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \
      EXPONENT_FOR_SQUARE_FOR_POWER /= 2;				\
    }									\
  }									\

#define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_I , LENGTH , MODULO ) \
  static ll ANSWER[LENGTH];						\
  static ll ANSWER_INV[LENGTH];						\
  static ll INVERSE[LENGTH];						\
  {									\
    ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1;				\
    ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL;			\
    FOREQ( i , 1 , MAX_I ){						\
      ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= MODULO; \
    }									\
    ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \
    FOREQ( i , 2 , MAX_I ){						\
      ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = MODULO - ( ( ( MODULO / i ) * INVERSE[MODULO % i] ) % MODULO ) ) %= MODULO; \
    }									\
  }									\

// 通常の二分探索その1
// EXPRESSIONがANSWERの狭義単調増加関数の時、EXPRESSION >= TARGETを満たす最小の整数を返す。
// 広義単調増加関数を扱いたい時は等号成立の処理を消して続く>に等号を付ける。
#define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET )		\
  ll ANSWER;								\
  {									\
    ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM;				\
    ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM;				\
    ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
    ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \
    while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \
      VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \
      if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){		\
	break;								\
      } else {								\
	if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){		\
	  VARIABLE_FOR_BINARY_SEARCH_U = ANSWER;			\
	} else {							\
	  VARIABLE_FOR_BINARY_SEARCH_L = ANSWER + 1;			\
	}								\
	ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
      }									\
    }									\
  }									\

// 通常の二分探索その2
// EXPRESSIONがANSWERの狭義単調増加関数の時、EXPRESSION <= TARGETを満たす最大の整数を返す。
// 広義単調増加関数を扱いたい時は等号成立の処理を消して続く<に等号を付ける。
#define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET )		\
  ll ANSWER;								\
  {									\
    ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM;				\
    ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM;				\
    ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
    ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \
    while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \
      VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \
      if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){		\
	break;								\
      } else {								\
	if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH < 0 ){		\
	  VARIABLE_FOR_BINARY_SEARCH_L = ANSWER;			\
	} else {							\
	  VARIABLE_FOR_BINARY_SEARCH_U = ANSWER - 1;			\
	}								\
	ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + 1 + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
      }									\
    }									\
  }									\

// 通常の二分探索その3
// EXPRESSIONがANSWERの狭義単調減少関数の時、EXPRESSION >= TARGETを満たす最大の整数を返す。
// 広義単調増加関数を扱いたい時は等号成立の処理を消して続く>に等号を付ける。
#define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET )		\
  ll ANSWER;								\
  {									\
    ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM;				\
    ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM;				\
    ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
    ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \
    while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \
      VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \
      if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){		\
	break;								\
      } else {								\
	if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){		\
	  VARIABLE_FOR_BINARY_SEARCH_L = ANSWER;			\
	} else {							\
	  VARIABLE_FOR_BINARY_SEARCH_U = ANSWER - 1;			\
	}								\
	ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + 1 + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
      }									\
    }									\
  }									\

// 通常の二分探索その4
// EXPRESSIONがANSWERの狭義単調減少関数の時、EXPRESSION <= TARGETを満たす最小の整数を返す。
// 広義単調増加関数を扱いたい時は等号成立の処理を消して続く<に等号を付ける。
#define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET )		\
  ll ANSWER;								\
  {									\
    ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM;				\
    ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM;				\
    ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
    ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \
    while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \
      VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \
      if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){		\
	break;								\
      } else {								\
	if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH < 0 ){		\
	  VARIABLE_FOR_BINARY_SEARCH_U = ANSWER;			\
	} else {							\
	  VARIABLE_FOR_BINARY_SEARCH_L = ANSWER + 1;			\
	}								\
	ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
      }									\
    }									\
  }									\



// 二進法の二分探索
// EXPRESSIONがANSWERの狭義単調増加関数の時、EXPRESSION <= TARGETを満たす最大の整数を返す。
#define BBS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET )		\
  ll ANSWER = MINIMUM;							\
  {									\
    ll VARIABLE_FOR_POWER_FOR_BINARY_SEARCH = 1;			\
    ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( MAXIMUM ) - ANSWER; \
    while( VARIABLE_FOR_POWER_FOR_BINARY_SEARCH <= VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ){ \
      VARIABLE_FOR_POWER_FOR_BINARY_SEARCH *= 2;			\
    }									\
    VARIABLE_FOR_POWER_FOR_BINARY_SEARCH /= 2;				\
    ll VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH = ANSWER;			\
    while( VARIABLE_FOR_POWER_FOR_BINARY_SEARCH != 0 ){			\
      ANSWER = VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH + VARIABLE_FOR_POWER_FOR_BINARY_SEARCH; \
      VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \
      if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){		\
	VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH = ANSWER;			\
	break;								\
      } else if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH < 0 ){	\
	VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH = ANSWER;			\
      }									\
      VARIABLE_FOR_POWER_FOR_BINARY_SEARCH /= 2;			\
    }									\
    ANSWER = VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH;			\
  }									\


// 以下https://www.geeksforgeeks.org/sum-of-bitwise-or-of-all-subarrays-of-a-given-array-set-2/の改変

// Function to find sum of bitwise OR
// of all subarrays
ll givesum(ll A[], ll n)
{
    // Find max element of the array
    // ll max = *max_element(A, A + n);
    ll max = ll( 1 ) << 28; 
    // Find the max bit position set in
    // the array
    // ll maxBit = log2(max) + 1;
    ll maxBit = 28;
 
    ll totalSubarrays = ( n * (n + 1) ) / 2;
 
    ll s = 0;
 
    // Traverse from 1st bit to last bit which
    // can be set in any element of the array
    for (ll i = 0; i < maxBit; i++) {
 
        // Vector to store indexes of the array
        // with i-th bit not set
        vector<ll> vec{};
 
        ll sum = 0;
 
        // Traverse the array
        for (ll j = 0; j < n; j++) {
 
            // Check if ith bit is not set in A[j]
            ll a = A[j] >> i;
            if (!(a & 1)) {
                vec.push_back(j);
            }
        }
 
        // Variable to store count of subarrays
        // whose bitwise OR will have i-th bit
        // not set
        ll cntSubarrNotSet = 0;
 
        ll cnt = 1;
 
        for (ll j = 1; j < vec.size(); j++) {
            if (vec[j] - vec[j - 1] == 1) {
                cnt++;
            }
            else {
	      cntSubarrNotSet += ( cnt * (cnt + 1) ) / 2;
 
                cnt = 1;
            }
        }
 
        // For last element of vec
        cntSubarrNotSet += ( cnt * (cnt + 1) ) / 2;
 
        // If vec is empty then cntSubarrNotSet
        // should be 0 and not 1
        if (vec.size() == 0)
            cntSubarrNotSet = 0;
 
        // Variable to store count of subarrays
        // whose bitwise OR will have i-th bit set
        ll cntSubarrIthSet = totalSubarrays - cntSubarrNotSet;
 
        // s += cntSubarrIthSet * pow(2, i);
         s += cntSubarrIthSet << i;
   }
 
    return s;
}
 
int main()
{
  UNTIE;
  // CEXPR( int , bound_T , 100000 );
  // CIN_ASSERT( T , 1 , bound_T );
  CEXPR( ll , bound_N , 200000 );
  // CEXPR( ll , bound_N , 1000000000 );
  // CEXPR( ll , bound_N , 1000000000000000000 );
  CIN_ASSERT( N , 2 , bound_N );
  CEXPR( ll , bound_Ai , 1 << 28 );
  ll A[bound_N] = {};
  FOR( i , 0 , N ){
    CIN_ASSERT( Ai , 0 , bound_Ai );
    A[i] = Ai;
  }
  RETURN( givesum( A , N ) );
}
0