結果
| 問題 |
No.510 二次漸化式
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-05-17 01:04:39 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 99 ms / 3,000 ms |
| コード長 | 8,649 bytes |
| コンパイル時間 | 2,298 ms |
| コンパイル使用メモリ | 180,576 KB |
| 実行使用メモリ | 25,856 KB |
| 最終ジャッジ日時 | 2024-12-14 22:24:35 |
| 合計ジャッジ時間 | 7,130 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 34 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
template<const unsigned int MOD> struct prime_modint {
using mint = prime_modint;
unsigned int v;
prime_modint() : v(0) {}
prime_modint(unsigned int a) { a %= MOD; v = a; }
prime_modint(unsigned long long a) { a %= MOD; v = a; }
prime_modint(int a) { a %= (int)(MOD); if(a < 0)a += MOD; v = a; }
prime_modint(long long a) { a %= (int)(MOD); if(a < 0)a += MOD; v = a; }
static constexpr int mod() { return MOD; }
mint& operator++() {v++; if(v == MOD)v = 0; return *this;}
mint& operator--() {if(v == 0)v = MOD; v--; return *this;}
mint operator++(int) { mint result = *this; ++*this; return result; }
mint operator--(int) { mint result = *this; --*this; return result; }
mint& operator+=(const mint& rhs) { v += rhs.v; if(v >= MOD) v -= MOD; return *this; }
mint& operator-=(const mint& rhs) { if(v < rhs.v) v += MOD; v -= rhs.v; return *this; }
mint& operator*=(const mint& rhs) {
v = (unsigned int)((unsigned long long)(v) * rhs.v % MOD);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint r = 1, x = *this;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const { assert(v); return pow(MOD - 2); }
friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; }
friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; }
friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; }
friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; }
friend bool operator==(const mint& lhs, const mint& rhs) { return (lhs.v == rhs.v); }
friend bool operator!=(const mint& lhs, const mint& rhs) { return (lhs.v != rhs.v); }
friend std::ostream& operator << (std::ostream &os, const mint& rhs) noexcept { return os << rhs.v; }
};
using mint = prime_modint<1000000007>;
//using mint = prime_modint<998244353>;
template <class T, size_t N> struct Matrix {
std::array<std::array<T, N>, N> A{};
Matrix() {}
Matrix(const std::array<std::array<T, N>, N> &M) : A(M){}
Matrix(const std::vector<std::vector<T>> &M) {
for(size_t i = 0; i < N; i++){
for(size_t j = 0; j < N; j++){
A[i][j] = M[i][j];
}
}
}
const std::array<T, N>& operator[](int i) const { return A[i]; }
std::array<T, N>& operator[](int i) { return A[i]; }
Matrix& operator+=(const Matrix& rhs) {
for(size_t i = 0; i < N; i++){
for(size_t j = 0; j < N; j++){
A[i][j] += rhs[i][j];
}
}
return *this;
}
Matrix& operator-=(const Matrix& rhs) {
for(size_t i = 0; i < N; i++){
for(size_t j = 0; j < N; j++){
A[i][j] -= rhs[i][j];
}
}
return *this;
}
Matrix& operator*=(const Matrix& rhs) {
std::array<std::array<T, N>, N> res{};
for(size_t i = 0; i < N; i++){
for(size_t j = 0; j < N; j++){
for(size_t k = 0; k < N; k++){
res[i][j] += A[i][k] * rhs[k][j];
}
}
}
swap(A, res);
return *this;
}
Matrix& operator+() const { return *this; }
Matrix& operator-() const { return Matrix() - *this; }
friend Matrix operator+(const Matrix& lhs, const Matrix& rhs) {
return Matrix(lhs) += rhs;
}
friend Matrix operator-(const Matrix& lhs, const Matrix& rhs) {
return Matrix(lhs) -= rhs;
}
friend Matrix operator*(const Matrix& lhs, const Matrix& rhs) {
return Matrix(lhs) *= rhs;
}
friend bool operator==(const Matrix& lhs, const Matrix& rhs) {
return (lhs.A == rhs.A);
}
friend bool operator!=(const Matrix& lhs, const Matrix& rhs) {
return (lhs.A != rhs.A);
}
Matrix pow(long long v){
Matrix res, temp = A;
for(size_t i = 0; i < N; i++)res[i][i] = 1;
while(v){
if(v & 1)res *= temp;
temp *= temp;
v >>= 1;
}
return res;
}
friend std::ostream& operator << (std::ostream &os, const Matrix& rhs) noexcept {
for(size_t i = 0; i < N; i++){
if(i) os << '\n';
for(size_t j = 0; j < N; j++){
os << (j ? " " : "") << rhs[i][j];
}
}
return os;
}
};
template <class S, S (*op)(S, S), S (*e)()> struct segtree {
public:
segtree() : segtree(0) {}
segtree(int n) : segtree(std::vector<S>(n, e())) {}
segtree(const std::vector<S>& v) : _n(int(v.size())) {
log = ceil_pow2(_n);
size = 1 << log;
d = std::vector<S>(2 * size, e());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, S x) {
assert(0 <= p && p < _n);
p += size;
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) {
assert(0 <= p && p < _n);
return d[p + size];
}
const S operator[](int p) const { return get(p); }
S operator[](int p) { return get(p); }
S prod(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
S sml = e(), smr = e();
l += size;
r += size;
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() { return d[1]; }
template <bool (*f)(S)> int max_right(int l) {
return max_right(l, [](S x) { return f(x); });
}
template <class F> int max_right(int l, F f) {
assert(0 <= l && l <= _n);
assert(f(e()));
if (l == _n) return _n;
l += size;
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!f(op(sm, d[l]))) {
while (l < size) {
l = (2 * l);
if (f(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
template <bool (*f)(S)> int min_left(int r) {
return min_left(r, [](S x) { return f(x); });
}
template <class F> int min_left(int r, F f) {
assert(0 <= r && r <= _n);
assert(f(e()));
if (r == 0) return 0;
r += size;
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!f(op(d[r], sm))) {
while (r < size) {
r = (2 * r + 1);
if (f(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
int _n, size, log;
std::vector<S> d;
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
};
using S = Matrix<mint, 4>;
S op(S lhs, S rhs){return lhs * rhs;}
S e(){
S a{};
a[0][0] = a[1][1] = a[2][2] = a[3][3] = 1;
return a;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
int n, Q, i, v;
char c;
cin >> n >> Q;
S Mt{{{1,0,0,0},{0,0,0,0},{0,0,0,0},{0,1,1,1}}};
segtree<S, op, e> seg(vector<S>(n, Mt));
while(Q--){
cin >> c >> i;
if(c == 'a'){
auto temp = seg.prod(0, i);
mint ans;
for(int i = 0; i < 4; i++) ans += temp[i][0];
cout << ans << '\n';
}else if(c == 'x'){
cin >> v;
auto temp = seg.get(i);
temp[1][0] = v;
seg.set(i, temp);
}else{
cin >> v;
auto temp = seg.get(i);
temp[1][1] = mint(v) * v;
temp[2][1] = 2 * v;
temp[2][2] = v;
seg.set(i, temp);
}
}
}