結果
問題 | No.470 Inverse S+T Problem |
ユーザー | vwxyz |
提出日時 | 2023-05-17 01:04:59 |
言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
結果 |
AC
|
実行時間 | 61 ms / 2,000 ms |
コード長 | 5,407 bytes |
コンパイル時間 | 143 ms |
コンパイル使用メモリ | 13,312 KB |
実行使用メモリ | 16,768 KB |
最終ジャッジ日時 | 2024-12-14 22:24:49 |
合計ジャッジ時間 | 3,128 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 33 ms
11,392 KB |
testcase_01 | AC | 32 ms
11,392 KB |
testcase_02 | AC | 32 ms
11,392 KB |
testcase_03 | AC | 33 ms
11,392 KB |
testcase_04 | AC | 33 ms
11,136 KB |
testcase_05 | AC | 33 ms
11,392 KB |
testcase_06 | AC | 61 ms
16,768 KB |
testcase_07 | AC | 61 ms
16,640 KB |
testcase_08 | AC | 60 ms
16,768 KB |
testcase_09 | AC | 33 ms
11,136 KB |
testcase_10 | AC | 34 ms
11,264 KB |
testcase_11 | AC | 36 ms
11,264 KB |
testcase_12 | AC | 32 ms
11,264 KB |
testcase_13 | AC | 33 ms
11,136 KB |
testcase_14 | AC | 34 ms
11,392 KB |
testcase_15 | AC | 34 ms
11,264 KB |
testcase_16 | AC | 32 ms
11,136 KB |
testcase_17 | AC | 33 ms
11,136 KB |
testcase_18 | AC | 33 ms
11,136 KB |
testcase_19 | AC | 33 ms
11,392 KB |
testcase_20 | AC | 32 ms
11,264 KB |
testcase_21 | AC | 33 ms
11,136 KB |
testcase_22 | AC | 33 ms
11,392 KB |
testcase_23 | AC | 34 ms
11,392 KB |
testcase_24 | AC | 33 ms
11,392 KB |
testcase_25 | AC | 34 ms
11,136 KB |
testcase_26 | AC | 33 ms
11,136 KB |
testcase_27 | AC | 32 ms
11,392 KB |
testcase_28 | AC | 36 ms
11,904 KB |
testcase_29 | AC | 33 ms
11,264 KB |
testcase_30 | AC | 34 ms
11,392 KB |
ソースコード
import sys readline=sys.stdin.readline from collections import defaultdict class Prime: def __init__(self,N): assert N<=10**8 self.smallest_prime_factor=[None]*(N+1) for i in range(2,N+1,2): self.smallest_prime_factor[i]=2 n=int(N**.5)+1 for p in range(3,n,2): if self.smallest_prime_factor[p]==None: self.smallest_prime_factor[p]=p for i in range(p**2,N+1,2*p): if self.smallest_prime_factor[i]==None: self.smallest_prime_factor[i]=p for p in range(n,N+1): if self.smallest_prime_factor[p]==None: self.smallest_prime_factor[p]=p self.primes=[p for p in range(N+1) if p==self.smallest_prime_factor[p]] def Factorize(self,N): assert N>=1 factors=defaultdict(int) if N<=len(self.smallest_prime_factor)-1: while N!=1: factors[self.smallest_prime_factor[N]]+=1 N//=self.smallest_prime_factor[N] else: for p in self.primes: while N%p==0: N//=p factors[p]+=1 if N<p*p: if N!=1: factors[N]+=1 break if N<=len(self.smallest_prime_factor)-1: while N!=1: factors[self.smallest_prime_factor[N]]+=1 N//=self.smallest_prime_factor[N] break else: if N!=1: factors[N]+=1 return factors def Divisors(self,N): assert N>0 divisors=[1] for p,e in self.Factorize(N).items(): pow_p=[1] for _ in range(e): pow_p.append(pow_p[-1]*p) divisors=[i*j for i in divisors for j in pow_p] return divisors def Is_Prime(self,N): return N==self.smallest_prime_factor[N] def Totient(self,N): for p in self.Factorize(N).keys(): N*=p-1 N//=p return N def Mebius(self,N): fact=self.Factorize(N) for e in fact.values(): if e>=2: return 0 else: if len(fact)%2==0: return 1 else: return -1 def SCC(N,edges): start = [0] * (N + 1) elist = [0] * len(edges) for e in edges: start[e[0] + 1] += 1 for i in range(1, N + 1): start[i] += start[i - 1] counter = start[:] for e in edges: elist[counter[e[0]]] = e[1] counter[e[0]] += 1 N = N now_ord = group_num = 0 visited = [] low = [0] * N order = [-1] * N ids = [0] * N parent = [-1] * N stack = [] for i in range(N): if order[i] == -1: stack.append(i) stack.append(i) while stack: v = stack.pop() if order[v] == -1: low[v] = order[v] = now_ord now_ord += 1 visited.append(v) for i in range(start[v], start[v + 1]): to = elist[i] if order[to] == -1: stack.append(to) stack.append(to) parent[to] = v else: low[v] = min(low[v], order[to]) else: if low[v] == order[v]: while True: u = visited.pop() order[u] = N ids[u] = group_num if u == v: break group_num += 1 if parent[v] != -1: low[parent[v]] = min(low[parent[v]], low[v]) for i, x in enumerate(ids): ids[i] = group_num - 1 - x groups = [[] for _ in range(group_num)] for i, x in enumerate(ids): groups[x].append(i) return groups class TwoSAT: def __init__(self,N): self.N=N self.edges=[] def Add_Clause(self,i,f,j,g): assert 0<=i<self.N assert 0<=j<self.N self.edges.append((2*i+(0 if f else 1),2*j+(1 if g else 0))) self.edges.append((2*j+(0 if g else 1),2*i+(1 if f else 0))) def Satisfiable(self): scc=SCC(2*self.N,self.edges) idx=[None]*2*self.N for i,lst in enumerate(scc): for x in lst: idx[x]=i retu=[None]*self.N for i in range(self.N): if idx[2*i]==idx[2*i+1]: return None retu[i]=idx[2*i]<idx[2*i+1] return retu N=int(readline()) U=[readline().rstrip() for n in range(N)] if 26*26+2<2*N: print("Impossible") exit() dct=defaultdict(list) for n in range(N): for b in (0,1): dct[U[n][:b+1]].append((n,b)) dct[U[n][b+1:]].append((n,b)) TSAT=TwoSAT(N) for lst in dct.values(): le=len(lst) for i in range(le): for j in range(i+1,le): n,b=lst[i] nn,bb=lst[j] TSAT.Add_Clause(n,b^1,nn,bb^1) lst=TSAT.Satisfiable() if lst==None: print("Impossible") else: for u,b in zip(U,lst): print(u[:b+1],u[b+1:])