結果
問題 | No.2309 [Cherry 5th Tune D] 夏の先取り |
ユーザー |
👑 |
提出日時 | 2023-05-19 22:08:10 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 11,367 bytes |
コンパイル時間 | 2,889 ms |
コンパイル使用メモリ | 215,832 KB |
最終ジャッジ日時 | 2025-02-13 01:59:24 |
ジャッジサーバーID (参考情報) |
judge3 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 1 WA * 49 |
ソースコード
// #define _GLIBCXX_DEBUG#pragma GCC optimize ( "O3" )#pragma GCC optimize( "unroll-loops" )#pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )#include <bits/stdc++.h>using namespace std;using uint = unsigned int;using ll = long long;using ull = unsigned long long;#define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) )#define TYPE_OF( VAR ) remove_const<remove_reference<decltype( VAR )>::type >::type#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr )#define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE#define CIN( LL , A ) LL A; cin >> A#define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) )#define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX )#define GETLINE( A ) string A; getline( cin , A )#define GETLINE_SEPARATE( A , SEPARATOR ) string A; getline( cin , A , SEPARATOR )#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )#define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )#define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- )#define FOR_ITR( ARRAY , ITR , END ) for( auto ITR = ARRAY .begin() , END = ARRAY .end() ; ITR != END ; ITR ++ )#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES )#define QUIT return 0#define COUT( ANSWER ) cout << ( ANSWER ) << "\n"#define RETURN( ANSWER ) COUT( ANSWER ); QUIT#define SET_PRECISION( PRECISION ) cout << fixed << setprecision( PRECISION )#define DOUBLE( PRECISION , ANSWER ) SET_PRECISION << ( ANSWER ) << "\n"; QUIT#ifdef DEBUG#define CERR( ANSWER ) cerr << ANSWER << "\n";#else#define CERR( ANSWER )#endiftemplate <typename T> inline T Absolute( const T& a ){ return a > 0 ? a : -a; }template <typename T> inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : ( a % p ) + p; }// ARGUMENTの型がintやuintでないように注意#define POWER( ANSWER , ARGUMENT , EXPONENT ) \TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \{ \TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \} \ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \} \} \#define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \ll ANSWER{ 1 }; \{ \ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( MODULO + ( ( ARGUMENT ) % MODULO ) ) % MODULO; \TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \} \ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \} \} \#define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_I , LENGTH , MODULO ) \static ll ANSWER[LENGTH]; \static ll ANSWER_INV[LENGTH]; \static ll INVERSE[LENGTH]; \{ \ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \FOREQ( i , 1 , MAX_I ){ \ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= MODULO; \} \ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \FOREQ( i , 2 , MAX_I ){ \ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = MODULO - ( ( ( MODULO / i ) * INVERSE[MODULO % i] ) % MODULO ) ) %= MODULO; \} \} \// 通常の二分探索その1// EXPRESSIONがANSWERの狭義単調増加関数の時、EXPRESSION >= TARGETを満たす最小の整数を返す。// 広義単調増加関数を扱いたい時は等号成立の処理を消して続く>に等号を付ける。#define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ll ANSWER; \{ \ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \break; \} else { \if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){ \VARIABLE_FOR_BINARY_SEARCH_U = ANSWER; \} else { \VARIABLE_FOR_BINARY_SEARCH_L = ANSWER + 1; \} \ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \} \} \} \// 通常の二分探索その2// EXPRESSIONがANSWERの狭義単調増加関数の時、EXPRESSION <= TARGETを満たす最大の整数を返す。// 広義単調増加関数を扱いたい時は等号成立の処理を消して続く<に等号を付ける。#define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ll ANSWER; \{ \ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \break; \} else { \if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH < 0 ){ \VARIABLE_FOR_BINARY_SEARCH_L = ANSWER; \} else { \VARIABLE_FOR_BINARY_SEARCH_U = ANSWER - 1; \} \ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + 1 + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \} \} \} \// 通常の二分探索その3// EXPRESSIONがANSWERの狭義単調減少関数の時、EXPRESSION >= TARGETを満たす最大の整数を返す。// 広義単調増加関数を扱いたい時は等号成立の処理を消して続く>に等号を付ける。#define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ll ANSWER; \{ \ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \break; \} else { \if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){ \VARIABLE_FOR_BINARY_SEARCH_L = ANSWER; \} else { \VARIABLE_FOR_BINARY_SEARCH_U = ANSWER - 1; \} \ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + 1 + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \} \} \} \// 通常の二分探索その4// EXPRESSIONがANSWERの狭義単調減少関数の時、EXPRESSION <= TARGETを満たす最小の整数を返す。// 広義単調増加関数を扱いたい時は等号成立の処理を消して続く<に等号を付ける。#define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ll ANSWER; \{ \ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \break; \} else { \if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH < 0 ){ \VARIABLE_FOR_BINARY_SEARCH_U = ANSWER; \} else { \VARIABLE_FOR_BINARY_SEARCH_L = ANSWER + 1; \} \ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \} \} \} \// 二進法の二分探索// EXPRESSIONがANSWERの狭義単調増加関数の時、EXPRESSION <= TARGETを満たす最大の整数を返す。#define BBS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ll ANSWER = MINIMUM; \{ \ll VARIABLE_FOR_POWER_FOR_BINARY_SEARCH = 1; \ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( MAXIMUM ) - ANSWER; \while( VARIABLE_FOR_POWER_FOR_BINARY_SEARCH <= VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ){ \VARIABLE_FOR_POWER_FOR_BINARY_SEARCH *= 2; \} \VARIABLE_FOR_POWER_FOR_BINARY_SEARCH /= 2; \ll VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH = ANSWER; \while( VARIABLE_FOR_POWER_FOR_BINARY_SEARCH != 0 ){ \ANSWER = VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH + VARIABLE_FOR_POWER_FOR_BINARY_SEARCH; \VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH = ANSWER; \break; \} else if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH < 0 ){ \VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH = ANSWER; \} \VARIABLE_FOR_POWER_FOR_BINARY_SEARCH /= 2; \} \ANSWER = VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH; \} \// 圧縮用#define TE template#define TY typename#define US using#define ST static#define IN inline#define CL class#define PU public#define OP operator#define CE constexpr#define CO const#define NE noexcept#define RE return#define WH while#define VO void#define VE vector#define LI list#define BE begin#define EN end#define SZ size#define MO move#define TH this#define CRI CO int&#define CRUI CO uint&#define CRL CO ll&int main(){UNTIE;CEXPR( int , bound_T , 100000 );CIN_ASSERT( T , 1 , bound_T );// CEXPR( int , bound_N , 100000 );// CEXPR( ll , bound_N , 1000000000 );// CEXPR( ll , bound_N , 1000000000000000000 );// maximise xX+yY+zZ+wW under x+z+w,x+y+w,y+z+w<=A,B,CREPEAT( T ){CIN( int , A );CIN( int , B );CIN( int , C );CIN( ll , X );CIN( ll , Y );CIN( ll , Z );CIN( ll , W );ll answer = 0;int w_max = min( min( A , B ) , C );FOREQ( w , 0 , w_max ){int zx = A - w;int xy = B - w;int yz = C - w;int x = ( zx - yz + xy ) / 2;int y = xy - x;int z = zx - x;if( x >= 0 && y >= 0 && z >= 0 && y + z <= yz ){ll temp = x * X + y * Y + z * Z + w * W;answer = max( answer , temp );}}COUT( answer );}QUIT;}