結果

問題 No.2308 [Cherry 5th Tune B] もしかして、真?
ユーザー suisensuisen
提出日時 2023-05-19 22:42:10
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 598 ms / 2,000 ms
コード長 45,672 bytes
コンパイル時間 3,777 ms
コンパイル使用メモリ 335,692 KB
最終ジャッジ日時 2025-02-13 02:51:23
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 39
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
#ifdef _MSC_VER
# include <intrin.h>
#else
# include <x86intrin.h>
#endif
#include <limits>
#include <type_traits>
namespace suisen {
// ! utility
template <typename ...Types>
using constraints_t = std::enable_if_t<std::conjunction_v<Types...>, std::nullptr_t>;
template <bool cond_v, typename Then, typename OrElse>
constexpr decltype(auto) constexpr_if(Then&& then, OrElse&& or_else) {
if constexpr (cond_v) {
return std::forward<Then>(then);
} else {
return std::forward<OrElse>(or_else);
}
}
// ! function
template <typename ReturnType, typename Callable, typename ...Args>
using is_same_as_invoke_result = std::is_same<std::invoke_result_t<Callable, Args...>, ReturnType>;
template <typename F, typename T>
using is_uni_op = is_same_as_invoke_result<T, F, T>;
template <typename F, typename T>
using is_bin_op = is_same_as_invoke_result<T, F, T, T>;
template <typename Comparator, typename T>
using is_comparator = std::is_same<std::invoke_result_t<Comparator, T, T>, bool>;
// ! integral
template <typename T, typename = constraints_t<std::is_integral<T>>>
constexpr int bit_num = std::numeric_limits<std::make_unsigned_t<T>>::digits;
template <typename T, unsigned int n>
struct is_nbit { static constexpr bool value = bit_num<T> == n; };
template <typename T, unsigned int n>
static constexpr bool is_nbit_v = is_nbit<T, n>::value;
// ?
template <typename T>
struct safely_multipliable {};
template <>
struct safely_multipliable<int> { using type = long long; };
template <>
struct safely_multipliable<long long> { using type = __int128_t; };
template <>
struct safely_multipliable<unsigned int> { using type = unsigned long long; };
template <>
struct safely_multipliable<unsigned long int> { using type = __uint128_t; };
template <>
struct safely_multipliable<unsigned long long> { using type = __uint128_t; };
template <>
struct safely_multipliable<float> { using type = float; };
template <>
struct safely_multipliable<double> { using type = double; };
template <>
struct safely_multipliable<long double> { using type = long double; };
template <typename T>
using safely_multipliable_t = typename safely_multipliable<T>::type;
template <typename T, typename = void>
struct rec_value_type {
using type = T;
};
template <typename T>
struct rec_value_type<T, std::void_t<typename T::value_type>> {
using type = typename rec_value_type<typename T::value_type>::type;
};
template <typename T>
using rec_value_type_t = typename rec_value_type<T>::type;
} // namespace suisen
// ! type aliases
using i128 = __int128_t;
using u128 = __uint128_t;
template <typename T>
using pq_greater = std::priority_queue<T, std::vector<T>, std::greater<T>>;
// ! macros (internal)
#define DETAIL_OVERLOAD2(_1,_2,name,...) name
#define DETAIL_OVERLOAD3(_1,_2,_3,name,...) name
#define DETAIL_OVERLOAD4(_1,_2,_3,_4,name,...) name
#define DETAIL_REP4(i,l,r,s) for(std::remove_reference_t<std::remove_const_t<decltype(r)>>i=(l);i<(r);i+=(s))
#define DETAIL_REP3(i,l,r) DETAIL_REP4(i,l,r,1)
#define DETAIL_REP2(i,n) DETAIL_REP3(i,0,n)
#define DETAIL_REPINF3(i,l,s) for(std::remove_reference_t<std::remove_const_t<decltype(l)>>i=(l);;i+=(s))
#define DETAIL_REPINF2(i,l) DETAIL_REPINF3(i,l,1)
#define DETAIL_REPINF1(i) DETAIL_REPINF2(i,0)
#define DETAIL_RREP4(i,l,r,s) for(std::remove_reference_t<std::remove_const_t<decltype(r)>>i=(l)+fld((r)-(l)-1,s)*(s);i>=(l);i-=(s))
#define DETAIL_RREP3(i,l,r) DETAIL_RREP4(i,l,r,1)
#define DETAIL_RREP2(i,n) DETAIL_RREP3(i,0,n)
#define DETAIL_CAT_I(a, b) a##b
#define DETAIL_CAT(a, b) DETAIL_CAT_I(a, b)
#define DETAIL_UNIQVAR(tag) DETAIL_CAT(tag, __LINE__)
// ! macros
#define REP(...) DETAIL_OVERLOAD4(__VA_ARGS__, DETAIL_REP4 , DETAIL_REP3 , DETAIL_REP2 )(__VA_ARGS__)
#define RREP(...) DETAIL_OVERLOAD4(__VA_ARGS__, DETAIL_RREP4 , DETAIL_RREP3 , DETAIL_RREP2 )(__VA_ARGS__)
#define REPINF(...) DETAIL_OVERLOAD3(__VA_ARGS__, DETAIL_REPINF3, DETAIL_REPINF2, DETAIL_REPINF1)(__VA_ARGS__)
#define LOOP(n) for (std::remove_reference_t<std::remove_const_t<decltype(n)>> DETAIL_UNIQVAR(loop_variable) = n; DETAIL_UNIQVAR(loop_variable) -->
    0;)
#define ALL(iterable) std::begin(iterable), std::end(iterable)
#define INPUT(type, ...) type __VA_ARGS__; read(__VA_ARGS__)
// ! debug
#ifdef LOCAL
# define debug(...) debug_internal(#__VA_ARGS__, __VA_ARGS__)
template <class T, class... Args>
void debug_internal(const char* s, T&& first, Args&&... args) {
constexpr const char* prefix = "[\033[32mDEBUG\033[m] ";
constexpr const char* open_brakets = sizeof...(args) == 0 ? "" : "(";
constexpr const char* close_brakets = sizeof...(args) == 0 ? "" : ")";
std::cerr << prefix << open_brakets << s << close_brakets << ": " << open_brakets << std::forward<T>(first);
((std::cerr << ", " << std::forward<Args>(args)), ...);
std::cerr << close_brakets << "\n";
}
#else
# define debug(...) void(0)
#endif
// ! I/O utilities
// __int128_t
std::ostream& operator<<(std::ostream& dest, __int128_t value) {
std::ostream::sentry s(dest);
if (s) {
__uint128_t tmp = value < 0 ? -value : value;
char buffer[128];
char* d = std::end(buffer);
do {
--d;
*d = "0123456789"[tmp % 10];
tmp /= 10;
} while (tmp != 0);
if (value < 0) {
--d;
*d = '-';
}
int len = std::end(buffer) - d;
if (dest.rdbuf()->sputn(d, len) != len) {
dest.setstate(std::ios_base::badbit);
}
}
return dest;
}
// __uint128_t
std::ostream& operator<<(std::ostream& dest, __uint128_t value) {
std::ostream::sentry s(dest);
if (s) {
char buffer[128];
char* d = std::end(buffer);
do {
--d;
*d = "0123456789"[value % 10];
value /= 10;
} while (value != 0);
int len = std::end(buffer) - d;
if (dest.rdbuf()->sputn(d, len) != len) {
dest.setstate(std::ios_base::badbit);
}
}
return dest;
}
// pair
template <typename T, typename U>
std::ostream& operator<<(std::ostream& out, const std::pair<T, U>& a) {
return out << a.first << ' ' << a.second;
}
// tuple
template <unsigned int N = 0, typename ...Args>
std::ostream& operator<<(std::ostream& out, const std::tuple<Args...>& a) {
if constexpr (N >= std::tuple_size_v<std::tuple<Args...>>) return out;
else {
out << std::get<N>(a);
if constexpr (N + 1 < std::tuple_size_v<std::tuple<Args...>>) out << ' ';
return operator<<<N + 1>(out, a);
}
}
// vector
template <typename T>
std::ostream& operator<<(std::ostream& out, const std::vector<T>& a) {
for (auto it = a.begin(); it != a.end();) {
out << *it;
if (++it != a.end()) out << ' ';
}
return out;
}
// array
template <typename T, size_t N>
std::ostream& operator<<(std::ostream& out, const std::array<T, N>& a) {
for (auto it = a.begin(); it != a.end();) {
out << *it;
if (++it != a.end()) out << ' ';
}
return out;
}
inline void print() { std::cout << '\n'; }
template <typename Head, typename... Tail>
inline void print(const Head& head, const Tail &...tails) {
std::cout << head;
if (sizeof...(tails)) std::cout << ' ';
print(tails...);
}
template <typename Iterable>
auto print_all(const Iterable& v, std::string sep = " ", std::string end = "\n") -> decltype(std::cout << *v.begin(), void()) {
for (auto it = v.begin(); it != v.end();) {
std::cout << *it;
if (++it != v.end()) std::cout << sep;
}
std::cout << end;
}
__int128_t stoi128(const std::string& s) {
__int128_t ret = 0;
for (int i = 0; i < int(s.size()); i++) if ('0' <= s[i] and s[i] <= '9') ret = 10 * ret + s[i] - '0';
if (s[0] == '-') ret = -ret;
return ret;
}
__uint128_t stou128(const std::string& s) {
__uint128_t ret = 0;
for (int i = 0; i < int(s.size()); i++) if ('0' <= s[i] and s[i] <= '9') ret = 10 * ret + s[i] - '0';
return ret;
}
// __int128_t
std::istream& operator>>(std::istream& in, __int128_t& v) {
std::string s;
in >> s;
v = stoi128(s);
return in;
}
// __uint128_t
std::istream& operator>>(std::istream& in, __uint128_t& v) {
std::string s;
in >> s;
v = stou128(s);
return in;
}
// pair
template <typename T, typename U>
std::istream& operator>>(std::istream& in, std::pair<T, U>& a) {
return in >> a.first >> a.second;
}
// tuple
template <unsigned int N = 0, typename ...Args>
std::istream& operator>>(std::istream& in, std::tuple<Args...>& a) {
if constexpr (N >= std::tuple_size_v<std::tuple<Args...>>) return in;
else return operator>><N + 1>(in >> std::get<N>(a), a);
}
// vector
template <typename T>
std::istream& operator>>(std::istream& in, std::vector<T>& a) {
for (auto it = a.begin(); it != a.end(); ++it) in >> *it;
return in;
}
// array
template <typename T, size_t N>
std::istream& operator>>(std::istream& in, std::array<T, N>& a) {
for (auto it = a.begin(); it != a.end(); ++it) in >> *it;
return in;
}
template <typename ...Args>
void read(Args &...args) {
(std::cin >> ... >> args);
}
// ! integral utilities
// Returns pow(-1, n)
template <typename T> constexpr inline int pow_m1(T n) {
return -(n & 1) | 1;
}
// Returns pow(-1, n)
template <> constexpr inline int pow_m1<bool>(bool n) {
return -int(n) | 1;
}
// Returns floor(x / y)
template <typename T> constexpr inline T fld(const T x, const T y) {
return (x ^ y) >= 0 ? x / y : (x - (y + pow_m1(y >= 0))) / y;
}
template <typename T> constexpr inline T cld(const T x, const T y) {
return (x ^ y) <= 0 ? x / y : (x + (y + pow_m1(y >= 0))) / y;
}
template <typename T, std::enable_if_t<std::negation_v<suisen::is_nbit<T, 64>>, std::nullptr_t> = nullptr>
__attribute__((target("popcnt"))) constexpr inline int popcount(const T x) { return _mm_popcnt_u32(x); }
template <typename T, std::enable_if_t<suisen::is_nbit_v<T, 64>, std::nullptr_t> = nullptr>
__attribute__((target("popcnt"))) constexpr inline int popcount(const T x) { return _mm_popcnt_u64(x); }
template <typename T, std::enable_if_t<std::negation_v<suisen::is_nbit<T, 64>>, std::nullptr_t> = nullptr>
constexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num<T>; }
template <typename T, std::enable_if_t<suisen::is_nbit_v<T, 64>, std::nullptr_t> = nullptr>
constexpr inline int count_lz(const T x) { return x ? __builtin_clzll(x) : suisen::bit_num<T>; }
template <typename T, std::enable_if_t<std::negation_v<suisen::is_nbit<T, 64>>, std::nullptr_t> = nullptr>
constexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num<T>; }
template <typename T, std::enable_if_t<suisen::is_nbit_v<T, 64>, std::nullptr_t> = nullptr>
constexpr inline int count_tz(const T x) { return x ? __builtin_ctzll(x) : suisen::bit_num<T>; }
template <typename T> constexpr inline int floor_log2(const T x) { return suisen::bit_num<T> - 1 - count_lz(x); }
template <typename T> constexpr inline int ceil_log2(const T x) { return floor_log2(x) + ((x & -x) != x); }
template <typename T> constexpr inline int kth_bit(const T x, const unsigned int k) { return (x >> k) & 1; }
template <typename T> constexpr inline int parity(const T x) { return popcount(x) & 1; }
// ! container
template <typename T, typename Comparator>
auto priqueue_comp(const Comparator comparator) {
return std::priority_queue<T, std::vector<T>, Comparator>(comparator);
}
template <typename Container>
void sort_unique_erase(Container& a) {
std::sort(a.begin(), a.end());
a.erase(std::unique(a.begin(), a.end()), a.end());
}
template <typename InputIterator, typename BiConsumer>
auto foreach_adjacent_values(InputIterator first, InputIterator last, BiConsumer f) -> decltype(f(*first++, *last), void()) {
if (first != last) for (auto itr = first, itl = itr++; itr != last; itl = itr++) f(*itl, *itr);
}
template <typename Container, typename BiConsumer>
auto foreach_adjacent_values(Container &&c, BiConsumer f) -> decltype(c.begin(), c.end(), void()) {
foreach_adjacent_values(c.begin(), c.end(), f);
}
// ! other utilities
// x <- min(x, y). returns true iff `x` has chenged.
template <typename T>
inline bool chmin(T& x, const T& y) {
return y >= x ? false : (x = y, true);
}
// x <- max(x, y). returns true iff `x` has chenged.
template <typename T>
inline bool chmax(T& x, const T& y) {
return y <= x ? false : (x = y, true);
}
template <typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr>
std::string bin(T val, int bit_num = -1) {
std::string res;
if (bit_num != -1) {
for (int bit = bit_num; bit-- > 0;) res += '0' + ((val >> bit) & 1);
} else {
for (; val; val >>= 1) res += '0' + (val & 1);
std::reverse(res.begin(), res.end());
}
return res;
}
template <typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr>
std::vector<T> digits_low_to_high(T val, T base = 10) {
std::vector<T> res;
for (; val; val /= base) res.push_back(val % base);
if (res.empty()) res.push_back(T{ 0 });
return res;
}
template <typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr>
std::vector<T> digits_high_to_low(T val, T base = 10) {
auto res = digits_low_to_high(val, base);
std::reverse(res.begin(), res.end());
return res;
}
template <typename T>
std::string join(const std::vector<T>& v, const std::string& sep, const std::string& end) {
std::ostringstream ss;
for (auto it = v.begin(); it != v.end();) {
ss << *it;
if (++it != v.end()) ss << sep;
}
ss << end;
return ss.str();
}
template <typename Func, typename Seq>
auto transform_to_vector(const Func &f, const Seq &s) {
std::vector<std::invoke_result_t<Func, typename Seq::value_type>> v;
v.reserve(std::size(s)), std::transform(std::begin(s), std::end(s), std::back_inserter(v), f);
return v;
}
template <typename T, typename Seq>
auto copy_to_vector(const Seq &s) {
std::vector<T> v;
v.reserve(std::size(s)), std::copy(std::begin(s), std::end(s), std::back_inserter(v));
return v;
}
template <typename Seq>
Seq concat(Seq s, const Seq &t) {
s.reserve(std::size(s) + std::size(t));
std::copy(std::begin(t), std::end(t), std::back_inserter(s));
return s;
}
template <typename Seq>
std::vector<Seq> split(const Seq s, typename Seq::value_type delim) {
std::vector<Seq> res;
for (auto itl = std::begin(s), itr = itl;; itl = ++itr) {
while (itr != std::end(s) and *itr != delim) ++itr;
res.emplace_back(itl, itr);
if (itr == std::end(s)) return res;
}
}
int digit_to_int(char c) { return c - '0'; }
int lowercase_to_int(char c) { return c - 'a'; }
int uppercase_to_int(char c) { return c - 'A'; }
std::vector<int> digit_str_to_ints(const std::string &s) {
return transform_to_vector(digit_to_int, s);
}
std::vector<int> lowercase_str_to_ints(const std::string &s) {
return transform_to_vector(lowercase_to_int, s);
}
std::vector<int> uppercase_str_to_ints(const std::string &s) {
return transform_to_vector(uppercase_to_int, s);
}
const std::string Yes = "Yes", No = "No", YES = "YES", NO = "NO";
namespace suisen {}
using namespace suisen;
using namespace std;
struct io_setup {
io_setup(int precision = 20) {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
std::cout << std::fixed << std::setprecision(precision);
}
} io_setup_ {};
// ! code from here
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <optional>
#include <string>
#include <random>
#include <tuple>
#include <vector>
#include <utility>
namespace suisen::internal::implicit_treap {
template <typename T, typename Derived>
struct Node {
using random_engine = std::mt19937;
static inline random_engine rng{ std::random_device{}() };
using priority_type = std::invoke_result_t<random_engine>;
static priority_type random_priority() { return rng(); }
using node_type = Derived;
using node_pointer = uint32_t;
using size_type = uint32_t;
using difference_type = int32_t;
using value_type = T;
using pointer = value_type*;
using const_pointer = const value_type*;
using reference = value_type&;
using const_reference = const value_type&;
static inline std::vector<node_type> _nodes{};
static inline std::vector<node_pointer> _erased{};
static constexpr node_pointer null = ~node_pointer(0);
node_pointer _ch[2]{ null, null };
value_type _val;
size_type _size;
priority_type _priority;
node_pointer _prev = null, _next = null;
Node(const value_type val = {}): _val(val), _size(1), _priority(random_priority()) {}
static void reserve(size_type capacity) { _nodes.reserve(capacity); }
static bool is_null(node_pointer t) { return t == null; }
static bool is_not_null(node_pointer t) { return not is_null(t); }
static node_type& node(node_pointer t) { return _nodes[t]; }
static const node_type& const_node(node_pointer t) { return _nodes[t]; }
static value_type& value(node_pointer t) { return node(t)._val; }
static value_type set_value(node_pointer t, const value_type& new_val) { return std::exchange(value(t), new_val); }
static bool empty(node_pointer t) { return is_null(t); }
static size_type& size(node_pointer t) { return node(t)._size; }
static size_type safe_size(node_pointer t) { return empty(t) ? 0 : size(t); }
static priority_type& priority(node_pointer t) { return node(t)._priority; }
static void set_priority(node_pointer t, priority_type new_priority) { priority(t) = new_priority; }
static node_pointer& prev(node_pointer t) { return node(t)._prev; }
static node_pointer& next(node_pointer t) { return node(t)._next; }
static void link(node_pointer l, node_pointer r) { next(l) = r, prev(r) = l; }
static node_pointer min(node_pointer t) {
while (true) {
node_pointer nt = child0(t);
if (is_null(nt)) return t;
t = nt;
}
}
static node_pointer max(node_pointer t) {
while (true) {
node_pointer nt = child1(t);
if (is_null(nt)) return t;
t = nt;
}
}
static node_pointer& child0(node_pointer t) { return node(t)._ch[0]; }
static node_pointer& child1(node_pointer t) { return node(t)._ch[1]; }
static node_pointer& child(node_pointer t, bool b) { return node(t)._ch[b]; }
static node_pointer set_child0(node_pointer t, node_pointer cid) { return std::exchange(child0(t), cid); }
static node_pointer set_child1(node_pointer t, node_pointer cid) { return std::exchange(child1(t), cid); }
static node_pointer set_child(node_pointer t, bool b, node_pointer cid) { return std::exchange(child(t, b), cid); }
static node_pointer update(node_pointer t) { // t : not null
size(t) = safe_size(child0(t)) + safe_size(child1(t)) + 1;
return t;
}
static node_pointer empty_node() { return null; }
template <typename ...Args>
static node_pointer create_node(Args &&...args) {
if (_erased.size()) {
node_pointer res = _erased.back();
_erased.pop_back();
node(res) = node_type(std::forward<Args>(args)...);
return res;
} else {
node_pointer res = _nodes.size();
_nodes.emplace_back(std::forward<Args>(args)...);
return res;
}
}
static void delete_node(node_pointer t) { _erased.push_back(t); }
static void delete_tree(node_pointer t) {
if (is_null(t)) return;
delete_tree(child0(t));
delete_tree(child1(t));
delete_node(t);
}
template <typename ...Args>
static node_pointer build(Args &&... args) {
std::vector<value_type> dat(std::forward<Args>(args)...);
const size_t n = dat.size();
std::vector<priority_type> priorities(n);
std::generate(priorities.begin(), priorities.end(), random_priority);
std::make_heap(priorities.begin(), priorities.end());
std::vector<node_pointer> nodes(n);
auto rec = [&](auto rec, size_t heap_index, size_t dat_index_offset) -> std::pair<size_t, node_pointer> {
if (heap_index >= n) return { 0, null };
auto [lsiz, lch] = rec(rec, 2 * heap_index + 1, dat_index_offset);
dat_index_offset += lsiz;
node_pointer root = create_node(std::move(dat[dat_index_offset]));
nodes[dat_index_offset] = root;
set_priority(root, priorities[heap_index]);
if (dat_index_offset) {
link(nodes[dat_index_offset - 1], root);
}
dat_index_offset += 1;
auto [rsiz, rch] = rec(rec, 2 * heap_index + 2, dat_index_offset);
set_child0(root, lch);
set_child1(root, rch);
return { lsiz + 1 + rsiz, node_type::update(root) };
};
return rec(rec, 0, 0).second;
}
static std::pair<node_pointer, node_pointer> split(node_pointer t, size_type k) {
if (k == 0) return { null, t };
if (k == size(t)) return { t, null };
static std::vector<node_pointer> lp{}, rp{};
while (true) {
if (const size_type lsiz = safe_size(child0(t)); k <= lsiz) {
if (rp.size()) set_child0(rp.back(), t);
rp.push_back(t);
if (k == lsiz) {
if (lp.size()) set_child1(lp.back(), child0(t));
node_pointer lt = set_child0(t, null), rt = null;
while (lp.size()) node_type::update(lt = lp.back()), lp.pop_back();
while (rp.size()) node_type::update(rt = rp.back()), rp.pop_back();
return { lt, rt };
}
t = child0(t);
} else {
if (lp.size()) set_child1(lp.back(), t);
lp.push_back(t);
t = child1(t);
k -= lsiz + 1;
}
}
}
static std::tuple<node_pointer, node_pointer, node_pointer> split(node_pointer t, size_type l, size_type r) {
auto [tlm, tr] = split(t, r);
auto [tl, tm] = split(tlm, l);
return { tl, tm, tr };
}
static node_pointer merge_impl(node_pointer tl, node_pointer tr) {
if (priority(tl) < priority(tr)) {
if (node_pointer tm = child0(tr); is_null(tm)) {
link(max(tl), tr);
set_child0(tr, tl);
} else {
set_child0(tr, merge(tl, tm));
}
return node_type::update(tr);
} else {
if (node_pointer tm = child1(tl); is_null(tm)) {
link(tl, min(tr));
set_child1(tl, tr);
} else {
set_child1(tl, merge(tm, tr));
}
return node_type::update(tl);
}
}
static node_pointer merge(node_pointer tl, node_pointer tr) {
if (is_null(tl)) return tr;
if (is_null(tr)) return tl;
return merge_impl(tl, tr);
}
static node_pointer merge(node_pointer tl, node_pointer tm, node_pointer tr) {
return merge(merge(tl, tm), tr);
}
static node_pointer insert_impl(node_pointer t, size_type k, node_pointer new_node) {
if (is_null(t)) return new_node;
static std::vector<node_pointer> st;
bool b = false;
while (true) {
if (is_null(t) or priority(new_node) > priority(t)) {
if (is_null(t)) {
t = new_node;
} else {
auto [tl, tr] = split(t, k);
if (is_not_null(tl)) link(max(tl), new_node);
if (is_not_null(tr)) link(new_node, min(tr));
set_child0(new_node, tl);
set_child1(new_node, tr);
t = node_type::update(new_node);
}
if (st.size()) {
set_child(st.back(), b, t);
do t = node_type::update(st.back()), st.pop_back(); while (st.size());
}
return t;
} else {
if (const size_type lsiz = safe_size(child0(t)); k <= lsiz) {
if (k == lsiz) link(new_node, t);
st.push_back(t), b = false;
t = child0(t);
} else {
if (k == lsiz + 1) link(t, new_node);
st.push_back(t), b = true;
t = child1(t);
k -= lsiz + 1;
}
}
}
}
template <typename ...Args>
static node_pointer insert(node_pointer t, size_type k, Args &&...args) {
return insert_impl(t, k, create_node(std::forward<Args>(args)...));
}
static std::pair<node_pointer, value_type> erase(node_pointer t, size_type k) {
if (const size_type lsiz = safe_size(child0(t)); k == lsiz) {
delete_node(t);
return { merge(child0(t), child1(t)), std::move(value(t)) };
} else if (k < lsiz) {
auto [c0, v] = erase(child0(t), k);
set_child0(t, c0);
if (is_not_null(c0) and k == lsiz - 1) link(max(c0), t);
return { node_type::update(t), std::move(v) };
} else {
auto [c1, v] = erase(child1(t), k - (lsiz + 1));
set_child1(t, c1);
if (is_not_null(c1) and k == lsiz + 1) link(t, min(c1));
return { node_type::update(t), std::move(v) };
}
}
static node_pointer rotate(node_pointer t, size_type k) {
auto [tl, tr] = split(t, k);
return merge(tr, tl);
}
static node_pointer rotate(node_pointer t, size_type l, size_type m, size_type r) {
auto [tl, tm, tr] = split(t, l, r);
return merge(tl, rotate(tm, m - l), tr);
}
template <typename Func>
static node_pointer set_update(node_pointer t, size_type k, const Func& f) {
if (const size_type lsiz = safe_size(child0(t)); k == lsiz) {
value_type& val = value(t);
val = f(const_cast<const value_type&>(val));
} else if (k < lsiz) {
set_child0(t, set_update(child0(t), k, f));
} else {
set_child1(t, set_update(child1(t), k - (lsiz + 1), f));
}
return node_type::update(t);
}
static std::vector<value_type> dump(node_pointer t) {
std::vector<value_type> res;
res.reserve(safe_size(t));
auto rec = [&](auto rec, node_pointer t) -> void {
if (is_null(t)) return;
rec(rec, child0(t));
res.push_back(value(t));
rec(rec, child1(t));
};
rec(rec, t);
return res;
}
template <bool reversed_, bool constant_>
struct NodeIterator {
static constexpr bool constant = constant_;
static constexpr bool reversed = reversed_;
friend Node;
friend Derived;
using difference_type = Node::difference_type;
using value_type = Node::value_type;
using pointer = std::conditional_t<constant, Node::const_pointer, Node::pointer>;
using reference = std::conditional_t<constant, Node::const_reference, Node::reference>;
using iterator_category = std::random_access_iterator_tag;
NodeIterator(): NodeIterator(null) {}
explicit NodeIterator(node_pointer root): NodeIterator(root, 0, null) {}
NodeIterator(const NodeIterator<reversed, not constant>& it): NodeIterator(it._root, it._index, it._cur) {}
reference operator*() const {
if (is_null(_cur) and _index != safe_size(_root)) {
_cur = _root;
for (size_type k = _index;;) {
if (size_type siz = safe_size(child(_cur, reversed)); k == siz) {
break;
} else if (k < siz) {
_cur = child(_cur, reversed);
} else {
_cur = child(_cur, not reversed);
k -= siz + 1;
}
}
}
return value(_cur);
}
reference operator[](difference_type k) const { return *((*this) + k); }
NodeIterator& operator++() { return *this += 1; }
NodeIterator& operator--() { return *this -= 1; }
NodeIterator& operator+=(difference_type k) { return suc(+k), * this; }
NodeIterator& operator-=(difference_type k) { return suc(-k), * this; }
NodeIterator operator++(int) { NodeIterator res = *this; ++(*this); return res; }
NodeIterator operator--(int) { NodeIterator res = *this; --(*this); return res; }
friend NodeIterator operator+(NodeIterator it, difference_type k) { return it += k; }
friend NodeIterator operator+(difference_type k, NodeIterator it) { return it += k; }
friend NodeIterator operator-(NodeIterator it, difference_type k) { return it -= k; }
friend difference_type operator-(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs._index - rhs._index; }
friend bool operator==(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs._index == rhs._index; }
friend bool operator!=(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs._index != rhs._index; }
friend bool operator<(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs._index < rhs._index; }
friend bool operator>(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs._index > rhs._index; }
friend bool operator<=(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs._index <= rhs._index; }
friend bool operator>=(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs._index >= rhs._index; }
static NodeIterator begin(node_pointer root) { return NodeIterator(root, 0, null); }
static NodeIterator end(node_pointer root) { return NodeIterator(root, safe_size(root), null); }
int size() const { return safe_size(_root); }
int index() const { return _index; }
private:
node_pointer _root;
size_type _index;
mutable node_pointer _cur; // it==end() or uninitialized (updates only index)
NodeIterator(node_pointer root, size_type index, node_pointer cur): _root(root), _index(index), _cur(cur) {}
void suc(difference_type k) {
_index += k;
if (_index == safe_size(_root) or std::abs(k) >= 20) _cur = null;
if (is_null(_cur)) return;
const bool positive = k < 0 ? (k = -k, reversed) : not reversed;
if (positive) {
while (k-- > 0) _cur = next(_cur);
} else {
while (k-- > 0) _cur = prev(_cur);
}
}
node_pointer root() const { return _root; }
void set_root(node_pointer new_root, size_type new_index) { _root = new_root, _index = new_index; }
node_pointer get_child0() const { return child0(_cur); }
node_pointer get_child1() const { return child1(_cur); }
template <typename Predicate>
static NodeIterator binary_search(node_pointer t, const Predicate& f) {
NodeIterator res(t, safe_size(t), null);
if (is_null(t)) return res;
NodeIterator it(t, safe_size(child0(t)), t);
while (is_not_null(it._cur)) {
if (f(it)) {
res = it;
it._cur = it.get_child0();
it._index -= is_null(it._cur) ? 1 : safe_size(it.get_child1()) + 1;
} else {
it._cur = it.get_child1();
it._index += is_null(it._cur) ? 1 : safe_size(it.get_child0()) + 1;
}
}
return res;
}
size_type get_gap_index_left() const {
if constexpr (reversed) return size() - index();
else return index();
}
size_type get_element_index_left() const {
if constexpr (reversed) return size() - index() - 1;
else return index();
}
};
using iterator = NodeIterator<false, false>;
using reverse_iterator = NodeIterator<true, false>;
using const_iterator = NodeIterator<false, true>;
using const_reverse_iterator = NodeIterator<true, true>;
template <typename>
struct is_node_iterator: std::false_type {};
template <bool reversed_, bool constant_>
struct is_node_iterator<NodeIterator<reversed_, constant_>>: std::true_type {};
template <typename X>
static constexpr bool is_node_iterator_v = is_node_iterator<X>::value;
static iterator begin(node_pointer t) { return iterator::begin(t); }
static iterator end(node_pointer t) { return iterator::end(t); }
static reverse_iterator rbegin(node_pointer t) { return reverse_iterator::begin(t); }
static reverse_iterator rend(node_pointer t) { return reverse_iterator::end(t); }
static const_iterator cbegin(node_pointer t) { return const_iterator::begin(t); }
static const_iterator cend(node_pointer t) { return const_iterator::end(t); }
static const_reverse_iterator crbegin(node_pointer t) { return const_reverse_iterator::begin(t); }
static const_reverse_iterator crend(node_pointer t) { return const_reverse_iterator::end(t); }
// Find the first element that satisfies the condition f : iterator -> { false, true }.
// Returns const_iterator
template <typename Iterator, typename Predicate, std::enable_if_t<is_node_iterator_v<Iterator>, std::nullptr_t> = nullptr>
static Iterator binary_search(node_pointer t, const Predicate& f) {
return Iterator::binary_search(t, f);
}
// comp(T t, U u) = (t < u)
template <typename Iterator, typename U, typename Compare = std::less<>, std::enable_if_t<is_node_iterator_v<Iterator>, std::nullptr_t> =
            nullptr>
static Iterator lower_bound(node_pointer t, const U& target, Compare comp) {
return binary_search<Iterator>(t, [&](Iterator it) { return not comp(*it, target); });
}
// comp(T u, U t) = (u < t)
template <typename Iterator, typename U, typename Compare = std::less<>, std::enable_if_t<is_node_iterator_v<Iterator>, std::nullptr_t> =
            nullptr>
static Iterator upper_bound(node_pointer t, const U& target, Compare comp) {
return binary_search<Iterator>(t, [&](Iterator it) { return comp(target, *it); });
}
template <typename Iterator, std::enable_if_t<is_node_iterator_v<Iterator>, std::nullptr_t> = nullptr>
static node_pointer insert(Iterator it, const value_type& val) {
return insert(it.root(), it.get_gap_index_left(), val);
}
template <typename Iterator, std::enable_if_t<is_node_iterator_v<Iterator>, std::nullptr_t> = nullptr>
static std::pair<node_pointer, value_type> erase(Iterator it) {
return erase(it.root(), it.get_element_index_left());
}
template <typename Iterator, std::enable_if_t<is_node_iterator_v<Iterator>, std::nullptr_t> = nullptr>
static std::pair<node_pointer, node_pointer> split(Iterator it) {
return split(it.root(), it.get_gap_index_left());
}
};
} // namespace suisen::internal::implicit_treap
namespace suisen {
namespace internal::implicit_treap {
template <typename T>
struct DefaultNode: Node<T, DefaultNode<T>> {
using base = Node<T, DefaultNode<T>>;
using base::base;
};
}
template <typename T>
class DynamicArray {
using node_type = internal::implicit_treap::DefaultNode<T>;
using node_pointer = typename node_type::node_pointer;
node_pointer _root;
struct node_pointer_construct {};
DynamicArray(node_pointer root, node_pointer_construct): _root(root) {}
public:
using value_type = typename node_type::value_type;
DynamicArray(): _root(node_type::empty_node()) {}
explicit DynamicArray(size_t n, const value_type& fill_value = {}): _root(node_type::build(n, fill_value)) {}
template <typename U>
DynamicArray(const std::vector<U>& dat) : _root(node_type::build(dat.begin(), dat.end())) {}
void free() {
node_type::delete_tree(_root);
_root = node_type::empty_node();
}
void clear() { free(); }
static void reserve(size_t capacity) { node_type::reserve(capacity); }
bool empty() const { return node_type::empty(_root); }
int size() const { return node_type::safe_size(_root); }
value_type& operator[](size_t k) {
assert(k < size_t(size()));
return begin()[k];
}
const value_type& operator[](size_t k) const {
assert(k < size_t(size()));
return cbegin()[k];
}
value_type& front() { return *begin(); }
value_type& back() { return *rbegin(); }
const value_type& front() const { return *cbegin(); }
const value_type& back() const { return *crbegin(); }
void insert(size_t k, const value_type& val) {
assert(k <= size_t(size()));
_root = node_type::insert(_root, k, val);
}
void push_front(const value_type& val) { insert(0, val); }
void push_back(const value_type& val) { insert(size(), val); }
value_type erase(size_t k) {
assert(k <= size_t(size()));
value_type v;
std::tie(_root, v) = node_type::erase(_root, k);
return v;
}
value_type pop_front() { return erase(0); }
value_type pop_back() { return erase(size() - 1); }
// Split immediately before the k-th element.
DynamicArray split(size_t k) {
assert(k <= size_t(size()));
node_pointer root_r;
std::tie(_root, root_r) = node_type::split(_root, k);
return DynamicArray(root_r, node_pointer_construct{});
}
void merge(DynamicArray r) { _root = node_type::merge(_root, r._root); }
void rotate(size_t k) {
assert(k <= size_t(size()));
_root = node_type::rotate(_root, k);
}
void rotate(size_t l, size_t m, size_t r) {
assert(l <= m and m <= r and r <= size_t(size()));
_root = node_type::rotate(_root, l, m, r);
}
std::vector<value_type> dump() const { return node_type::dump(_root); }
using iterator = typename node_type::iterator;
using reverse_iterator = typename node_type::reverse_iterator;
using const_iterator = typename node_type::const_iterator;
using const_reverse_iterator = typename node_type::const_reverse_iterator;
iterator begin() { return node_type::begin(_root); }
iterator end() { return node_type::end(_root); }
reverse_iterator rbegin() { return node_type::rbegin(_root); }
reverse_iterator rend() { return node_type::rend(_root); }
const_iterator begin() const { return cbegin(); }
const_iterator end() const { return cend(); }
const_reverse_iterator rbegin() const { return crbegin(); }
const_reverse_iterator rend() const { return crend(); }
const_iterator cbegin() const { return node_type::cbegin(_root); }
const_iterator cend() const { return node_type::cend(_root); }
const_reverse_iterator crbegin() const { return node_type::crbegin(_root); }
const_reverse_iterator crend() const { return node_type::crend(_root); }
// Find the first element that satisfies the condition f.
// Returns { position, optional(value) }
// Requirements: f(A[i]) must be monotonic
template <typename Predicate>
iterator binary_search(const Predicate& f) {
return node_type::template binary_search<iterator>(_root, f);
}
// comp(T t, U u) = (t < u)
// Requirements: sequence is sorted
template <typename U, typename Compare = std::less<>>
iterator lower_bound(const U& target, Compare comp = {}) {
return node_type::template lower_bound<iterator>(_root, target, comp);
}
// comp(T u, U t) = (u < t)
// Requirements: sequence is sorted
template <typename U, typename Compare = std::less<>>
iterator upper_bound(const U& target, Compare comp = {}) {
return node_type::template upper_bound<iterator>(_root, target, comp);
}
// Find the first element that satisfies the condition f.
// Returns { position, optional(value) }
// Requirements: f(A[i]) must be monotonic
template <typename Predicate>
const_iterator binary_search(const Predicate& f) const {
return node_type::template binary_search<const_iterator>(_root, f);
}
// comp(T t, U u) = (t < u)
// Requirements: sequence is sorted
template <typename U, typename Compare = std::less<>>
const_iterator lower_bound(const U& target, Compare comp = {}) const {
return node_type::template lower_bound<const_iterator>(_root, target, comp);
}
// comp(T u, U t) = (u < t)
// Requirements: sequence is sorted
template <typename U, typename Compare = std::less<>>
const_iterator upper_bound(const U& target, Compare comp = {}) const {
return node_type::template upper_bound<const_iterator>(_root, target, comp);
}
template <typename Iterator, std::enable_if_t<node_type::template is_node_iterator_v<Iterator>, std::nullptr_t> = nullptr>
void insert(Iterator it, const value_type &val) {
_root = node_type::insert(it, val);
}
template <typename Iterator, std::enable_if_t<node_type::template is_node_iterator_v<Iterator>, std::nullptr_t> = nullptr>
value_type erase(Iterator it) {
value_type erased;
std::tie(_root, erased) = node_type::erase(it);
return erased;
}
template <typename Iterator, std::enable_if_t<node_type::template is_node_iterator_v<Iterator>, std::nullptr_t> = nullptr>
DynamicArray split(Iterator it) {
node_pointer root_r;
std::tie(_root, root_r) = node_type::split(it);
return DynamicArray(root_r, node_pointer_construct{});
}
// handling internal nodes
using internal_node = node_type;
using internal_node_pointer = node_pointer;
internal_node_pointer& root_node() { return _root; }
const internal_node_pointer& root_node() const { return _root; }
void set_root_node(internal_node_pointer new_root) { root_node() = new_root; }
};
} // namespace suisen
bool ops[4][2][2] {
{
{ 0, 0 },
{ 0, 1 }
},
{
{ 0, 1 },
{ 1, 1 },
},
{
{ 0, 1 },
{ 1, 0 }
},
{
{ 1, 1 },
{ 0, 1 }
}
};
array<char, 256> op;
void solve() {
op['a'] = 0;
op['o'] = 1;
op['x'] = 2;
op['i'] = 3;
int n;
read(n);
vector<bool> init_a(n);
vector<int> init_y(n - 1);
REP(i, n) {
string s;
read(s);
init_a[i] = s == "True";
}
REP(i, n - 1) {
string s;
read(s);
init_y[i] = op[s.front()];
}
DynamicArray<bool> a(init_a);
DynamicArray<int> y(init_y);
LOOP(n - 1) {
// debug(a.dump());
// debug(y.dump());
int pos;
read(pos);
--pos;
a[pos] = ops[y[pos]][a[pos]][a[pos + 1]];
y.erase(pos);
a.erase(pos + 1);
}
print(a.front() ? "True" : "False");
}
int main() {
int t;
read(t);
LOOP(t) {
solve();
}
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0