結果
問題 | No.2305 [Cherry 5th Tune N] Until That Day... |
ユーザー | tokusakurai |
提出日時 | 2023-05-19 22:51:16 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 1,377 ms / 10,000 ms |
コード長 | 11,324 bytes |
コンパイル時間 | 3,075 ms |
コンパイル使用メモリ | 221,080 KB |
実行使用メモリ | 6,824 KB |
最終ジャッジ日時 | 2024-12-20 01:23:59 |
合計ジャッジ時間 | 8,169 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 3 ms
6,820 KB |
testcase_03 | AC | 3 ms
6,816 KB |
testcase_04 | AC | 3 ms
6,816 KB |
testcase_05 | AC | 3 ms
6,820 KB |
testcase_06 | AC | 3 ms
6,820 KB |
testcase_07 | AC | 7 ms
6,820 KB |
testcase_08 | AC | 8 ms
6,816 KB |
testcase_09 | AC | 7 ms
6,820 KB |
testcase_10 | AC | 7 ms
6,820 KB |
testcase_11 | AC | 1,377 ms
6,820 KB |
testcase_12 | AC | 1,348 ms
6,816 KB |
testcase_13 | AC | 143 ms
6,820 KB |
testcase_14 | AC | 145 ms
6,816 KB |
testcase_15 | AC | 4 ms
6,816 KB |
testcase_16 | AC | 4 ms
6,816 KB |
testcase_17 | AC | 2 ms
6,816 KB |
testcase_18 | AC | 1,371 ms
6,816 KB |
testcase_19 | AC | 4 ms
6,824 KB |
testcase_20 | AC | 4 ms
6,816 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #define rep(i, n) for (int i = 0; i < (n); i++) #define per(i, n) for (int i = (n)-1; i >= 0; i--) #define rep2(i, l, r) for (int i = (l); i < (r); i++) #define per2(i, l, r) for (int i = (r)-1; i >= (l); i--) #define each(e, v) for (auto &e : v) #define MM << " " << #define pb push_back #define eb emplace_back #define all(x) begin(x), end(x) #define rall(x) rbegin(x), rend(x) #define sz(x) (int)x.size() using ll = long long; using pii = pair<int, int>; using pil = pair<int, ll>; using pli = pair<ll, int>; using pll = pair<ll, ll>; template <typename T> using minheap = priority_queue<T, vector<T>, greater<T>>; template <typename T> using maxheap = priority_queue<T>; template <typename T> bool chmax(T &x, const T &y) { return (x < y) ? (x = y, true) : false; } template <typename T> bool chmin(T &x, const T &y) { return (x > y) ? (x = y, true) : false; } template <typename T> int flg(T x, int i) { return (x >> i) & 1; } int popcount(int x) { return __builtin_popcount(x); } int popcount(ll x) { return __builtin_popcountll(x); } int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int botbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int botbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <typename T> void print(const vector<T> &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' '); if (v.empty()) cout << '\n'; } template <typename T> void printn(const vector<T> &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << '\n'; } template <typename T> int lb(const vector<T> &v, T x) { return lower_bound(begin(v), end(v), x) - begin(v); } template <typename T> int ub(const vector<T> &v, T x) { return upper_bound(begin(v), end(v), x) - begin(v); } template <typename T> void rearrange(vector<T> &v) { sort(begin(v), end(v)); v.erase(unique(begin(v), end(v)), end(v)); } template <typename T> vector<int> id_sort(const vector<T> &v, bool greater = false) { int n = v.size(); vector<int> ret(n); iota(begin(ret), end(ret), 0); sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; }); return ret; } template <typename T> void reorder(vector<T> &a, const vector<int> &ord) { int n = a.size(); vector<T> b(n); for (int i = 0; i < n; i++) b[i] = a[ord[i]]; swap(a, b); } template <typename T> T floor(T x, T y) { assert(y != 0); if (y < 0) x = -x, y = -y; return (x >= 0 ? x / y : (x - y + 1) / y); } template <typename T> T ceil(T x, T y) { assert(y != 0); if (y < 0) x = -x, y = -y; return (x >= 0 ? (x + y - 1) / y : x / y); } template <typename S, typename T> pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) { return make_pair(p.first + q.first, p.second + q.second); } template <typename S, typename T> pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) { return make_pair(p.first - q.first, p.second - q.second); } template <typename S, typename T> istream &operator>>(istream &is, pair<S, T> &p) { S a; T b; is >> a >> b; p = make_pair(a, b); return is; } template <typename S, typename T> ostream &operator<<(ostream &os, const pair<S, T> &p) { return os << p.first << ' ' << p.second; } struct io_setup { io_setup() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout << fixed << setprecision(15); } } io_setup; constexpr int inf = (1 << 30) - 1; constexpr ll INF = (1LL << 60) - 1; // constexpr int MOD = 1000000007; constexpr int MOD = 998244353; template <int mod> struct Mod_Int { int x; Mod_Int() : x(0) {} Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} static int get_mod() { return mod; } Mod_Int &operator+=(const Mod_Int &p) { if ((x += p.x) >= mod) x -= mod; return *this; } Mod_Int &operator-=(const Mod_Int &p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } Mod_Int &operator*=(const Mod_Int &p) { x = (int)(1LL * x * p.x % mod); return *this; } Mod_Int &operator/=(const Mod_Int &p) { *this *= p.inverse(); return *this; } Mod_Int &operator++() { return *this += Mod_Int(1); } Mod_Int operator++(int) { Mod_Int tmp = *this; ++*this; return tmp; } Mod_Int &operator--() { return *this -= Mod_Int(1); } Mod_Int operator--(int) { Mod_Int tmp = *this; --*this; return tmp; } Mod_Int operator-() const { return Mod_Int(-x); } Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; } Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; } Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; } Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; } bool operator==(const Mod_Int &p) const { return x == p.x; } bool operator!=(const Mod_Int &p) const { return x != p.x; } Mod_Int inverse() const { assert(*this != Mod_Int(0)); return pow(mod - 2); } Mod_Int pow(long long k) const { Mod_Int now = *this, ret = 1; for (; k > 0; k >>= 1, now *= now) { if (k & 1) ret *= now; } return ret; } friend ostream &operator<<(ostream &os, const Mod_Int &p) { return os << p.x; } friend istream &operator>>(istream &is, Mod_Int &p) { long long a; is >> a; p = Mod_Int<mod>(a); return is; } }; using mint = Mod_Int<MOD>; template <typename T> struct Number_Theoretic_Transform { static int max_base; static T root; static vector<T> r, ir; Number_Theoretic_Transform() {} static void init() { if (!r.empty()) return; int mod = T::get_mod(); int tmp = mod - 1; root = 2; while (root.pow(tmp >> 1) == 1) root++; max_base = 0; while (tmp % 2 == 0) tmp >>= 1, max_base++; r.resize(max_base), ir.resize(max_base); for (int i = 0; i < max_base; i++) { r[i] = -root.pow((mod - 1) >> (i + 2)); // r[i] := 1 の 2^(i+2) 乗根 ir[i] = r[i].inverse(); // ir[i] := 1/r[i] } } static void ntt(vector<T> &a) { init(); int n = a.size(); assert((n & (n - 1)) == 0); assert(n <= (1 << max_base)); for (int k = n; k >>= 1;) { T w = 1; for (int s = 0, t = 0; s < n; s += 2 * k) { for (int i = s, j = s + k; i < s + k; i++, j++) { T x = a[i], y = w * a[j]; a[i] = x + y, a[j] = x - y; } w *= r[__builtin_ctz(++t)]; } } } static void intt(vector<T> &a) { init(); int n = a.size(); assert((n & (n - 1)) == 0); assert(n <= (1 << max_base)); for (int k = 1; k < n; k <<= 1) { T w = 1; for (int s = 0, t = 0; s < n; s += 2 * k) { for (int i = s, j = s + k; i < s + k; i++, j++) { T x = a[i], y = a[j]; a[i] = x + y, a[j] = w * (x - y); } w *= ir[__builtin_ctz(++t)]; } } T inv = T(n).inverse(); for (auto &e : a) e *= inv; } static vector<T> convolve(vector<T> a, vector<T> b) { if (a.empty() || b.empty()) return {}; if (min(a.size(), b.size()) < 40) { int n = a.size(), m = b.size(); vector<T> c(n + m - 1, 0); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) c[i + j] += a[i] * b[j]; } return c; } int k = (int)a.size() + (int)b.size() - 1, n = 1; while (n < k) n <<= 1; a.resize(n, 0), b.resize(n, 0); ntt(a), ntt(b); for (int i = 0; i < n; i++) a[i] *= b[i]; intt(a), a.resize(k); return a; } }; template <typename T> int Number_Theoretic_Transform<T>::max_base = 0; template <typename T> T Number_Theoretic_Transform<T>::root = T(); template <typename T> vector<T> Number_Theoretic_Transform<T>::r = vector<T>(); template <typename T> vector<T> Number_Theoretic_Transform<T>::ir = vector<T>(); using NTT = Number_Theoretic_Transform<mint>; // [x^k](P(x)/Q(x)) template <typename T> T Bostan_Mori(vector<T> P, vector<T> Q, long long k) { using NTT_ = Number_Theoretic_Transform<T>; int n = max((int)P.size(), (int)Q.size()); P.resize(n, 0), Q.resize(n, 0); assert(n > 0 && Q[0] != 0); int t = 1; while (t < 2 * n - 1) t <<= 1; for (; k > 0; k >>= 1) { vector<T> R = Q; for (int i = 1; i < n; i += 2) R[i] = -R[i]; P.resize(t, 0), NTT_::ntt(P); Q.resize(t, 0), NTT_::ntt(Q); R.resize(t, 0), NTT_::ntt(R); vector<T> A(t), B(t); for (int i = 0; i < t; i++) { A[i] = P[i] * R[i]; B[i] = Q[i] * R[i]; } NTT_::intt(A), NTT_::intt(B); Q.resize(n); for (int i = 0; i < n; i++) Q[i] = B[2 * i]; P.resize(n); if (k & 1) { for (int i = 0; i < n - 1; i++) P[i] = A[2 * i + 1]; P[n - 1] = 0; } else { for (int i = 0; i < n; i++) P[i] = A[2 * i]; } } return P[0] / Q[0]; } // d 項間線形漸化式 a[n] = c[1]*a[n-1]+c[2]*a[n-2]+...+c[d]*a[n-d] の第 k 項 (0-indexed) template <typename T> T linear_recurrence(const vector<T> &a, const vector<T> &c, long long k) { using NTT_ = Number_Theoretic_Transform<T>; int d = a.size(); vector<T> Q(d + 1, 0); Q[0] = 1; for (int i = 1; i <= d; i++) Q[i] = -c[i]; vector<T> P = NTT_::convolve(a, Q); P.resize(d); return Bostan_Mori(P, Q, k); } void solve() { int N; cin >> N; N++; vector<vector<int>> es(N); rep2(i, 1, N) { int p; cin >> p; es[p].eb(i); } vector<mint> w(N); rep2(i, 1, N) cin >> w[i]; vector<mint> P(N, 0); vector<int> d(N, 0); P[0] = 1, d[0] = 0; auto dfs = [&](auto &&dfs, int now) -> void { if (empty(es[now])) return; mint S = 0; each(e, es[now]) S += w[e]; each(e, es[now]) { P[e] += P[now] * w[e] / S; d[e] = d[now] + 1; dfs(dfs, e); } }; dfs(dfs, 0); // print(P), print(d); vector<mint> f = {1, -1}; vector<mint> g(N + 1, 0); g[0] = 1; rep(i, N) { if (empty(es[i])) g[d[i] + 1] -= P[i]; } vector<mint> a = {1}; vector<mint> b = NTT::convolve(f, g); while (b.back() == 0) b.pop_back(); int Q; cin >> Q; while (Q--) { int v, k; cin >> v >> k; if (k < d[v]) { cout << "0\n"; continue; } mint E = Bostan_Mori(a, b, k - d[v]); E *= P[v]; if (v == 0) E--; cout << E << '\n'; } } int main() { int T = 1; // cin >> T; while (T--) solve(); }