結果
問題 | No.2311 [Cherry 5th Tune] Cherry Month |
ユーザー | tokusakurai |
提出日時 | 2023-05-19 23:44:32 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 320 ms / 4,600 ms |
コード長 | 15,626 bytes |
コンパイル時間 | 3,123 ms |
コンパイル使用メモリ | 230,192 KB |
実行使用メモリ | 64,600 KB |
最終ジャッジ日時 | 2024-12-20 02:20:51 |
合計ジャッジ時間 | 20,429 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,820 KB |
testcase_02 | AC | 255 ms
45,348 KB |
testcase_03 | AC | 123 ms
18,816 KB |
testcase_04 | AC | 118 ms
15,744 KB |
testcase_05 | AC | 117 ms
15,072 KB |
testcase_06 | AC | 149 ms
18,404 KB |
testcase_07 | AC | 132 ms
14,848 KB |
testcase_08 | AC | 199 ms
45,372 KB |
testcase_09 | AC | 182 ms
31,452 KB |
testcase_10 | AC | 177 ms
31,320 KB |
testcase_11 | AC | 180 ms
35,288 KB |
testcase_12 | AC | 229 ms
36,224 KB |
testcase_13 | AC | 218 ms
34,992 KB |
testcase_14 | AC | 221 ms
40,396 KB |
testcase_15 | AC | 242 ms
39,936 KB |
testcase_16 | AC | 138 ms
18,100 KB |
testcase_17 | AC | 242 ms
41,604 KB |
testcase_18 | AC | 216 ms
38,564 KB |
testcase_19 | AC | 231 ms
40,832 KB |
testcase_20 | AC | 215 ms
34,588 KB |
testcase_21 | AC | 208 ms
24,644 KB |
testcase_22 | AC | 196 ms
26,312 KB |
testcase_23 | AC | 238 ms
42,224 KB |
testcase_24 | AC | 207 ms
35,588 KB |
testcase_25 | AC | 173 ms
34,056 KB |
testcase_26 | AC | 250 ms
46,524 KB |
testcase_27 | AC | 255 ms
64,600 KB |
testcase_28 | AC | 254 ms
64,592 KB |
testcase_29 | AC | 252 ms
64,472 KB |
testcase_30 | AC | 148 ms
23,232 KB |
testcase_31 | AC | 146 ms
23,060 KB |
testcase_32 | AC | 145 ms
23,212 KB |
testcase_33 | AC | 252 ms
60,740 KB |
testcase_34 | AC | 245 ms
60,392 KB |
testcase_35 | AC | 252 ms
60,692 KB |
testcase_36 | AC | 288 ms
56,060 KB |
testcase_37 | AC | 280 ms
55,740 KB |
testcase_38 | AC | 292 ms
56,128 KB |
testcase_39 | AC | 317 ms
57,944 KB |
testcase_40 | AC | 320 ms
57,520 KB |
testcase_41 | AC | 317 ms
58,168 KB |
testcase_42 | AC | 300 ms
57,284 KB |
testcase_43 | AC | 306 ms
58,736 KB |
testcase_44 | AC | 276 ms
59,848 KB |
testcase_45 | AC | 308 ms
59,940 KB |
testcase_46 | AC | 206 ms
44,744 KB |
testcase_47 | AC | 276 ms
60,076 KB |
testcase_48 | AC | 226 ms
55,864 KB |
testcase_49 | AC | 244 ms
56,052 KB |
testcase_50 | AC | 255 ms
56,216 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #define rep(i, n) for (int i = 0; i < (n); i++) #define per(i, n) for (int i = (n)-1; i >= 0; i--) #define rep2(i, l, r) for (int i = (l); i < (r); i++) #define per2(i, l, r) for (int i = (r)-1; i >= (l); i--) #define each(e, v) for (auto &e : v) #define MM << " " << #define pb push_back #define eb emplace_back #define all(x) begin(x), end(x) #define rall(x) rbegin(x), rend(x) #define sz(x) (int)x.size() using ll = long long; using pii = pair<int, int>; using pil = pair<int, ll>; using pli = pair<ll, int>; using pll = pair<ll, ll>; template <typename T> using minheap = priority_queue<T, vector<T>, greater<T>>; template <typename T> using maxheap = priority_queue<T>; template <typename T> bool chmax(T &x, const T &y) { return (x < y) ? (x = y, true) : false; } template <typename T> bool chmin(T &x, const T &y) { return (x > y) ? (x = y, true) : false; } template <typename T> int flg(T x, int i) { return (x >> i) & 1; } int popcount(int x) { return __builtin_popcount(x); } int popcount(ll x) { return __builtin_popcountll(x); } int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int botbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int botbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <typename T> void print(const vector<T> &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' '); if (v.empty()) cout << '\n'; } template <typename T> void printn(const vector<T> &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << '\n'; } template <typename T> int lb(const vector<T> &v, T x) { return lower_bound(begin(v), end(v), x) - begin(v); } template <typename T> int ub(const vector<T> &v, T x) { return upper_bound(begin(v), end(v), x) - begin(v); } template <typename T> void rearrange(vector<T> &v) { sort(begin(v), end(v)); v.erase(unique(begin(v), end(v)), end(v)); } template <typename T> vector<int> id_sort(const vector<T> &v, bool greater = false) { int n = v.size(); vector<int> ret(n); iota(begin(ret), end(ret), 0); sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; }); return ret; } template <typename T> void reorder(vector<T> &a, const vector<int> &ord) { int n = a.size(); vector<T> b(n); for (int i = 0; i < n; i++) b[i] = a[ord[i]]; swap(a, b); } template <typename T> T floor(T x, T y) { assert(y != 0); if (y < 0) x = -x, y = -y; return (x >= 0 ? x / y : (x - y + 1) / y); } template <typename T> T ceil(T x, T y) { assert(y != 0); if (y < 0) x = -x, y = -y; return (x >= 0 ? (x + y - 1) / y : x / y); } template <typename S, typename T> pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) { return make_pair(p.first + q.first, p.second + q.second); } template <typename S, typename T> pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) { return make_pair(p.first - q.first, p.second - q.second); } template <typename S, typename T> istream &operator>>(istream &is, pair<S, T> &p) { S a; T b; is >> a >> b; p = make_pair(a, b); return is; } template <typename S, typename T> ostream &operator<<(ostream &os, const pair<S, T> &p) { return os << p.first << ' ' << p.second; } struct io_setup { io_setup() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout << fixed << setprecision(15); } } io_setup; constexpr int inf = (1 << 30) - 1; constexpr ll INF = (1LL << 60) - 1; // constexpr int MOD = 1000000007; constexpr int MOD = 998244353; struct Union_Find_Tree { vector<int> data; const int n; int cnt; Union_Find_Tree(int n) : data(n, -1), n(n), cnt(n) {} int root(int x) { if (data[x] < 0) return x; return data[x] = root(data[x]); } int operator[](int i) { return root(i); } bool unite(int x, int y) { x = root(x), y = root(y); if (x == y) return false; if (data[x] > data[y]) swap(x, y); data[x] += data[y], data[y] = x; cnt--; return true; } int size(int x) { return -data[root(x)]; } int count() { return cnt; }; bool same(int x, int y) { return root(x) == root(y); } void clear() { cnt = n; fill(begin(data), end(data), -1); } }; template <bool directed = false> struct Euler_Tour_Subtree { struct edge { int to, id; edge(int to, int id) : to(to), id(id) {} }; vector<vector<edge>> es; vector<int> l, r; // 部分木 i は区間 [l[i],r[i]) に対応する。また、頂点 i は l[i] に対応する。 const int n; int m; Euler_Tour_Subtree(int n) : es(n), l(n, -1), r(n), n(n), m(0) {} void add_edge(int from, int to) { es[from].emplace_back(to, m); if (!directed) es[to].emplace_back(from, m); m++; } void _dfs(int now, int pre, int &cnt) { l[now] = cnt++; for (auto &e : es[now]) { if (e.to != pre) _dfs(e.to, now, cnt); } r[now] = cnt; } void build() { int cnt = 0; per(i, n) { if (l[i] == -1) _dfs(i, -1, cnt); } } }; template <typename Operator> struct Dual_Segment_Tree { using O = typename Operator::V; int n, m, height; vector<O> lazy; Dual_Segment_Tree(int n) : n(n) { m = 1, height = 0; while (m < n) m <<= 1, height++; lazy.assign(2 * m, Operator::id); } inline void eval(int i) { if (i < m && lazy[i] != Operator::id) { lazy[2 * i] = Operator::merge(lazy[2 * i], lazy[i]); lazy[2 * i + 1] = Operator::merge(lazy[2 * i + 1], lazy[i]); lazy[i] = Operator::id; } } inline void thrust(int i) { for (int j = height; j > 0; j--) eval(i >> j); } void update(int l, int r, const O &x) { l = max(l, 0), r = min(r, n); if (l >= r) return; l += m, r += m; thrust(l), thrust(r - 1); while (l < r) { if (l & 1) lazy[l] = Operator::merge(lazy[l], x), l++; if (r & 1) r--, lazy[r] = Operator::merge(lazy[r], x); l >>= 1, r >>= 1; } } O get(int i) { thrust(i + m); return lazy[i + m]; } O operator[](int i) { return get(i); } }; // sum template <typename T> struct Plus_Monoid { using V = T; static constexpr V merge(const V &a, const V &b) { return a + b; }; static const V id; }; template <typename T> constexpr T Plus_Monoid<T>::id = 0; // prod template <typename T> struct Product_Monoid { using V = T; static constexpr V merge(const V &a, const V &b) { return a * b; }; static const V id; }; template <typename T> constexpr T Product_Monoid<T>::id = 1; // min template <typename T> struct Min_Monoid { using V = T; static constexpr V merge(const V &a, const V &b) { return min(a, b); }; static const V id; }; template <typename T> constexpr T Min_Monoid<T>::id = numeric_limits<T>::max() / 2; // max template <typename T> struct Max_Monoid { using V = T; static constexpr V merge(V a, V b) { return max(a, b); }; static const V id; }; template <typename T> constexpr T Max_Monoid<T>::id = -(numeric_limits<T>::max() / 2); // 代入 template <typename T> struct Update_Monoid { using V = T; static constexpr V merge(const V &a, const V &b) { if (a == id) return b; if (b == id) return a; return b; } static const V id; }; template <typename T> constexpr T Update_Monoid<T>::id = numeric_limits<T>::max(); // min count (T:最大値の型、S:個数の型) template <typename T, typename S> struct Min_Count_Monoid { using V = pair<T, S>; static constexpr V merge(const V &a, const V &b) { if (a.first < b.first) return a; if (a.first > b.first) return b; return V(a.first, a.second + b.second); } static const V id; }; template <typename T, typename S> constexpr pair<T, S> Min_Count_Monoid<T, S>::id = make_pair(numeric_limits<T>::max() / 2, 0); // max count (T:最大値の型、S:個数の型) template <typename T, typename S> struct Max_Count_Monoid { using V = pair<T, S>; static constexpr V merge(const V &a, const V &b) { if (a.first > b.first) return a; if (a.first < b.first) return b; return V(a.first, a.second + b.second); } static const V id; }; template <typename T, typename S> constexpr pair<T, S> Max_Count_Monoid<T, S>::id = make_pair(-(numeric_limits<T>::max() / 2), 0); // 一次関数 ax+b の合成 (左から順に作用) template <typename T> struct Affine_Monoid { using V = pair<T, T>; static constexpr V merge(const V &a, const V &b) { return V(a.first * b.first, a.second * b.first + b.second); }; static const V id; }; template <typename T> constexpr pair<T, T> Affine_Monoid<T>::id = make_pair(1, 0); // モノイドの直積 template <typename Monoid_1, typename Monoid_2> struct Cartesian_Product_Monoid { using V1 = typename Monoid_1::V; using V2 = typename Monoid_2::V; using V = pair<V1, V2>; static constexpr V merge(const V &a, const V &b) { return V(Monoid_1::merge(a.first, b.first), Monoid_2::merge(a.second, b.second)); } static const V id; }; template <typename Monoid_1, typename Monoid_2> constexpr pair<typename Monoid_1::V, typename Monoid_2::V> Cartesian_Product_Monoid<Monoid_1, Monoid_2>::id = make_pair(Monoid_1::id, Monoid_2::id); // range add range min template <typename T> struct Min_Plus_Acted_Monoid { using Monoid = Min_Monoid<T>; using Operator = Plus_Monoid<T>; using M = T; using O = T; static constexpr M merge(const M &a, const O &b) { return a + b; }; }; // range add range max template <typename T> struct Max_Plus_Acted_Monoid { using Monoid = Max_Monoid<T>; using Operator = Plus_Monoid<T>; using M = T; using O = T; static constexpr M merge(const M &a, const O &b) { return a + b; }; }; // range add range min count (T:最小値の型、S:個数の型) template <typename T, typename S> struct Min_Count_Add_Acted_Monoid { using Monoid = Min_Count_Monoid<T, S>; using Operator = Plus_Monoid<T>; using M = pair<T, S>; using O = T; static constexpr M merge(const M &a, const O &b) { return make_pair(a.first + b, a.second); }; }; // range add range max count (T:最大値の型、S:個数の型) template <typename T, typename S> struct Max_Count_Add_Acted_Monoid { using Monoid = Max_Count_Monoid<T, S>; using Operator = Plus_Monoid<T>; using M = pair<T, S>; using O = T; static constexpr M merge(const M &a, const O &b) { return make_pair(a.first + b, a.second); }; }; // range add range sum template <typename T> struct Plus_Plus_Acted_Monoid { using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<int>>; using Operator = Plus_Monoid<T>; using M = pair<T, int>; using O = T; static constexpr M merge(const M &a, const O &b) { return M(a.first + b * a.second, a.second); } }; // range update range sum template <typename T> struct Plus_Update_Acted_Monoid { using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<int>>; using Operator = Update_Monoid<T>; using M = pair<T, int>; using O = T; static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : M(b * a.second, a.second); } }; // range update range min template <typename T> struct Min_Update_Acted_Monoid { using Monoid = Min_Monoid<T>; using Operator = Update_Monoid<T>; using M = T; using O = T; static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : b; } }; // range update range max template <typename T> struct Max_Update_Acted_Monoid { using Monoid = Max_Monoid<T>; using Operator = Update_Monoid<T>; using M = T; using O = T; static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : b; } }; // range affine range sum template <typename T> struct Plus_Affine_Acted_Monoid { using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<T>>; using Operator = Affine_Monoid<T>; using M = pair<T, T>; using O = pair<T, T>; static constexpr M merge(const M &a, const O &b) { return M(b.first * a.first + b.second * a.second, a.second); }; }; struct Data_1 { constexpr Data_1() {} }; struct Monoid_1 { using V = Data_1; static V merge(V a, V b) { return a; } static const V id; }; constexpr Monoid_1::V Monoid_1::id = Data_1(); struct Func_1 { constexpr Func_1() {} }; struct Operator_1 { using V = Func_1; static V merge(V a, V b) { return a; } static const V id; }; constexpr Operator_1::V Operator_1::id = Func_1(); struct Acted_Monoid_1 { using Monoid = Monoid_1; using Operator = Operator_1; using M = typename Monoid::V; using O = typename Operator::V; static M merge(M a, O b) { return a; } }; void solve() { int N; cin >> N; vector<ll> a(N); rep(i, N) cin >> a[i]; int T; cin >> T; Union_Find_Tree uf(N); vector<int> id(N); rep(i, N) id[i] = i; Euler_Tour_Subtree<true> G(2 * N); int K = N; vector<int> t(T), x(T), y(T); vector<int> deg(N, 0); rep(i, T) { cin >> t[i] >> x[i] >> y[i]; x[i]--; if (t[i] == 1) { y[i]--; deg[x[i]]++, deg[y[i]]++; int u = uf[x[i]], v = uf[y[i]]; if (u != v) { G.add_edge(K, id[u]); G.add_edge(K, id[v]); // cout << K MM id[u] MM id[v] << '\n'; uf.unite(u, v); id[uf[u]] = K; K++; } } } G.build(); // print(G.l); // 次数の閾値 int D = 500; int Q; cin >> Q; vector<vector<pii>> qs(T + 1); rep(i, Q) { int s, v; cin >> s >> v; v--; qs[s].eb(v, i); } Dual_Segment_Tree<Plus_Monoid<ll>> seg(2 * N); vector<ll> ans(Q, -1); vector<ll> lazy(N, 0); uf.clear(); rep(i, N) id[i] = i; K = N; vector<vector<int>> es(N), es2(N); rep(i, T + 1) { for (auto [v, id] : qs[i]) { // cout << "! " << v + 1 MM id + 1 << '\n'; ll tmp = a[v]; tmp -= seg[G.l[v]]; each(e, es2[v]) tmp -= lazy[e]; ans[id] = max(tmp, 0LL); } if (i == T) break; if (t[i] == 1) { es[x[i]].eb(y[i]), es[y[i]].eb(x[i]); if (deg[y[i]] > D) es2[x[i]].eb(y[i]); if (deg[x[i]] > D) es2[y[i]].eb(x[i]); int u = uf[x[i]], v = uf[y[i]]; if (u != v) { uf.unite(u, v); id[uf[u]] = K; K++; } } else if (t[i] == 2) { a[x[i]] -= y[i]; } else if (t[i] == 3) { a[x[i]] -= y[i]; if (deg[x[i]] <= D) { each(e, es[x[i]]) a[e] -= y[i]; } else { lazy[x[i]] += y[i]; } } else { int u = uf[x[i]]; int v = id[u]; // cout << "! " << i MM v << '\n'; seg.update(G.l[v], G.r[v], y[i]); } } printn(ans); } int main() { int T = 1; // cin >> T; while (T--) solve(); }