結果
問題 | No.2310 [Cherry 5th Tune A] Against Regret |
ユーザー | poyon |
提出日時 | 2023-05-19 23:52:44 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 3,350 ms / 6,000 ms |
コード長 | 12,532 bytes |
コンパイル時間 | 3,800 ms |
コンパイル使用メモリ | 233,852 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-12-20 03:02:23 |
合計ジャッジ時間 | 49,665 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | AC | 2 ms
6,820 KB |
testcase_02 | AC | 2 ms
6,816 KB |
testcase_03 | AC | 5 ms
6,820 KB |
testcase_04 | AC | 4 ms
6,820 KB |
testcase_05 | AC | 5 ms
6,816 KB |
testcase_06 | AC | 5 ms
6,816 KB |
testcase_07 | AC | 4 ms
6,816 KB |
testcase_08 | AC | 150 ms
6,820 KB |
testcase_09 | AC | 343 ms
6,816 KB |
testcase_10 | AC | 515 ms
6,816 KB |
testcase_11 | AC | 876 ms
6,816 KB |
testcase_12 | AC | 785 ms
6,820 KB |
testcase_13 | AC | 415 ms
6,816 KB |
testcase_14 | AC | 508 ms
6,820 KB |
testcase_15 | AC | 979 ms
6,820 KB |
testcase_16 | AC | 90 ms
6,820 KB |
testcase_17 | AC | 462 ms
6,816 KB |
testcase_18 | AC | 3,316 ms
6,816 KB |
testcase_19 | AC | 3,323 ms
6,820 KB |
testcase_20 | AC | 3,313 ms
6,820 KB |
testcase_21 | AC | 3,348 ms
6,816 KB |
testcase_22 | AC | 3,311 ms
6,820 KB |
testcase_23 | AC | 3,323 ms
6,820 KB |
testcase_24 | AC | 3,350 ms
6,816 KB |
testcase_25 | AC | 3,311 ms
6,820 KB |
testcase_26 | AC | 3,314 ms
6,820 KB |
testcase_27 | AC | 3,316 ms
6,816 KB |
testcase_28 | AC | 3,313 ms
6,816 KB |
testcase_29 | AC | 503 ms
6,816 KB |
ソースコード
// clang-format off #ifdef _LOCAL #include <pch.hpp> #else #include <bits/stdc++.h> #define cerr if (false) cerr #define debug_bar #define debug(...) #define debug2(vv) #define debug3(vvv) #endif using namespace std; using ll = long long; using ld = long double; using str = string; using P = pair<ll,ll>; using VP = vector<P>; using VVP = vector<VP>; using VC = vector<char>; using VS = vector<string>; using VVS = vector<VS>; using VI = vector<int>; using VVI = vector<VI>; using VVVI = vector<VVI>; using VLL = vector<ll>; using VVLL = vector<VLL>; using VVVLL = vector<VVLL>; using VB = vector<bool>; using VVB = vector<VB>; using VVVB = vector<VVB>; using VD = vector<double>; using VVD = vector<VD>; using VVVD = vector<VVD>; #define FOR(i,l,r) for (ll i = (l); i < (r); ++i) #define RFOR(i,l,r) for (ll i = (r)-1; (l) <= i; --i) #define REP(i,n) FOR(i,0,n) #define RREP(i,n) RFOR(i,0,n) #define FORE(e,c) for (auto&& e : c) #define ALL(c) (c).begin(), (c).end() #define SORT(c) sort(ALL(c)) #define RSORT(c) sort((c).rbegin(), (c).rend()) #define MIN(c) *min_element(ALL(c)) #define MAX(c) *max_element(ALL(c)) #define COUNT(c,v) count(ALL(c),(v)) #define len(c) ((ll)(c).size()) #define BIT(b,i) (((b)>>(i)) & 1) #define PCNT(b) ((ll)__builtin_popcountll(b)) #define LB(c,v) distance((c).begin(), lower_bound(ALL(c), (v))) #define UB(c,v) distance((c).begin(), upper_bound(ALL(c), (v))) #define UQ(c) do { SORT(c); (c).erase(unique(ALL(c)), (c).end()); (c).shrink_to_fit(); } while (0) #define END(...) do { print(__VA_ARGS__); exit(0); } while (0) constexpr ld EPS = 1e-10; constexpr ld PI = acosl(-1.0); constexpr int inf = (1 << 30) - (1 << 15); // 1,073,709,056 constexpr ll INF = (1LL << 62) - (1LL << 31); // 4,611,686,016,279,904,256 template<class... T> void input(T&... a) { (cin >> ... >> a); } void print() { cout << '\n'; } template<class T> void print(const T& a) { cout << a << '\n'; } template<class P1, class P2> void print(const pair<P1, P2>& a) { cout << a.first << " " << a.second << '\n'; } template<class T, class... Ts> void print(const T& a, const Ts&... b) { cout << a; (cout << ... << (cout << ' ', b)); cout << '\n'; } template<class T> void cout_line(const vector<T>& ans, int l, int r) { for (int i = l; i < r; i++) { if (i != l) { cout << ' '; } cout << ans[i]; } cout << '\n'; } template<class T> void print(const vector<T>& a) { cout_line(a, 0, a.size()); } template<class S, class T> bool chmin(S& a, const T b) { if (b < a) { a = b; return 1; } return 0; } template<class S, class T> bool chmax(S& a, const T b) { if (a < b) { a = b; return 1; } return 0; } template<class T> T SUM(const vector<T>& A) { return accumulate(ALL(A), T(0)); } template<class T> vector<T> cumsum(const vector<T>& A, bool offset = false) { int N = A.size(); vector<T> S(N+1, 0); for (int i = 0; i < N; i++) { S[i+1] = S[i] + A[i]; } if (not offset) { S.erase(S.begin()); } return S; } template<class T> string to_binary(T x, int B = 0) { string s; while (x) { s += ('0' + (x & 1)); x >>= 1; } while ((int)s.size() < B) { s += '0'; } reverse(s.begin(), s.end()); return s; } template<class F> ll binary_search(const F& is_ok, ll ok, ll ng) { while (abs(ok - ng) > 1) { ll m = (ok + ng) / 2; (is_ok(m) ? ok : ng) = m; } return ok; } template<class F> double binary_search_real(const F& is_ok, double ok, double ng, int iter = 90) { for (int i = 0; i < iter; i++) { double m = (ok + ng) / 2; (is_ok(m) ? ok : ng) = m; } return ok; } template<class T> using PQ_max = priority_queue<T>; template<class T> using PQ_min = priority_queue<T, vector<T>, greater<T>>; template<class T> T pick(stack<T>& s) { assert(not s.empty()); T x = s.top(); s.pop(); return x; } template<class T> T pick(queue<T>& q) { assert(not q.empty()); T x = q.front(); q.pop(); return x; } template<class T> T pick_front(deque<T>& dq) { assert(not dq.empty()); T x = dq.front(); dq.pop_front(); return x; } template<class T> T pick_back(deque<T>& dq) { assert(not dq.empty()); T x = dq.back(); dq.pop_back(); return x; } template<class T> T pick(PQ_min<T>& pq) { assert(not pq.empty()); T x = pq.top(); pq.pop(); return x; } template<class T> T pick(PQ_max<T>& pq) { assert(not pq.empty()); T x = pq.top(); pq.pop(); return x; } template<class T> T pick(vector<T>& v) { assert(not v.empty()); T x = v.back(); v.pop_back(); return x; } int to_int(const char c) { if (islower(c)) { return (c - 'a'); } if (isupper(c)) { return (c - 'A'); } if (isdigit(c)) { return (c - '0'); } assert(false); } char to_a(const int i) { assert(0 <= i && i < 26); return ('a' + i); } char to_A(const int i) { assert(0 <= i && i < 26); return ('A' + i); } char to_d(const int i) { assert(0 <= i && i <= 9); return ('0' + i); } ll min(int a, ll b) { return min((ll)a, b); } ll min(ll a, int b) { return min(a, (ll)b); } ll max(int a, ll b) { return max((ll)a, b); } ll max(ll a, int b) { return max(a, (ll)b); } ll mod(ll x, ll m) { assert(m > 0); return (x % m + m) % m; } ll ceil(ll a, ll b) { if (b < 0) { return ceil(-a, -b); } assert(b > 0); return (a < 0 ? a / b : (a + b - 1) / b); } ll floor(ll a, ll b) { if (b < 0) { return floor(-a, -b); } assert(b > 0); return (a > 0 ? a / b : (a - b + 1) / b); } ll powint(ll x, ll n) { assert(n >= 0); if (n == 0) { return 1; }; ll res = powint(x, n>>1); res *= res; if (n & 1) { res *= x; } return res; } pair<ll,ll> divmod(ll a, ll b) { assert(b != 0); ll q = floor(a, b); return make_pair(q, a - q * b); } ll bitlen(ll b) { if (b <= 0) { return 0; } return (64LL - __builtin_clzll(b)); } ll digitlen(ll n) { assert(n >= 0); if (n == 0) { return 1; } ll sum = 0; while (n > 0) { sum++; n /= 10; } return sum; } ll msb(ll b) { return (b <= 0 ? -1 : (63 - __builtin_clzll(b))); } ll lsb(ll b) { return (b <= 0 ? -1 : __builtin_ctzll(b)); } // -------------------------------------------------------- #include <atcoder/modint> using namespace atcoder; // constexpr ll MOD = 1000003; // using mint = modint; // mint::set_mod(MOD); // write in main() // using mint = modint1000000007; using mint = modint998244353; using VM = vector<mint>; using VVM = vector<VM>; using VVVM = vector<VVM>; using VVVVM = vector<VVVM>; template<int M> istream &operator>>(istream &is, static_modint<M> &m) { ll v; is >> v; m = v; return is; } template<int M> istream &operator>>(istream &is, dynamic_modint<M> &m) { ll v; is >> v; m = v; return is; } template<int M> ostream &operator<<(ostream &os, const static_modint<M> &m) { return os << m.val(); } template<int M> ostream &operator<<(ostream &os, const dynamic_modint<M> &m) { return os << m.val(); } // It is assumed that M (= mod) is prime number struct combination { public: combination() : combination(1) {} combination(int n) : N(1), fact_(2,0), ifact_(2,0), inv_(2,0) { M = mint().mod(); assert(0 < n && n < M); fact_[0] = fact_[1] = 1; ifact_[0] = ifact_[1] = 1; inv_[1] = 1; if (N < n) { build(n); } } mint P(int n, int k) { if (N < n) { build(n); } if (n < 0 || k < 0 || n < k) { return 0; } return fact_[n] * ifact_[n-k]; } mint C(int n, int k) { if (N < n) { build(n); } if (n < 0 || k < 0 || n < k) { return 0; } return fact_[n] * ifact_[n-k] * ifact_[k]; } mint H(int n, int k) { if (n == 0 && k == 0) { return 1; } if (n < 0 || k < 0) { return 0; } return C(n + k - 1, k); } mint fact(int n) { if (N < n) { build(n); } if (n < 0) { return 0; } return fact_[n]; } mint ifact(int n) { if (N < n) { build(n); } if (n < 0) { return 0; } return ifact_[n]; } mint inv(int n) { if (N < n) { build(n); } if (n < 0) { return 0; } return inv_[n]; } mint P_naive(ll n, int k) const noexcept { if (n < 0 || k < 0 || n < k) { return 0; } mint res = 1; for (int i = 1; i <= k; i++) { res *= (n - i + 1); } return res; } mint C_naive(ll n, int k) const noexcept { if (n < 0 || k < 0 || n < k) { return 0; } if (k > n - k) { k = n - k; } mint nume = 1, deno = 1; for (int i = 1; i <= k; i++) { nume *= (n - i + 1); deno *= i; } return nume / deno; } mint H_naive(ll n, int k) const noexcept { if (n == 0 && k == 0) { return 1; } if (n < 0 || k < 0) { return 0; } return C_naive(n + k - 1, k); } private: int N; int M; // mod vector<mint> fact_, ifact_, inv_; void build(int N_new) { assert(N < N_new); fact_.resize(N_new + 1); ifact_.resize(N_new + 1); inv_.resize(N_new + 1); for (int i = N + 1; i <= N_new; i++) { fact_[i] = fact_[i - 1] * i; inv_[i] = -inv_[M % i] * (M / i); ifact_[i] = ifact_[i - 1] * inv_[i]; } N = N_new; } }; // 座標圧縮 template <class T = ll> struct compress { public: compress() {} compress(const vector<T>& A) : xs(A) {} compress(const vector<T>& A, const vector<T>& B) { xs.reserve(A.size() + B.size()); for (const auto& a : A) { xs.push_back(a); } for (const auto& b : B) { xs.push_back(b); } } // 値 v を追加する // - amortized O(1) void add(T v) { assert(not is_built); xs.push_back(v); } // 配列 A の値を全て追加する // - O(|A|) void add(const vector<T>& A) { assert(not is_built); xs.reserve(xs.size() + A.size()); for (const auto& a : A) { xs.push_back(a); } } // 座標圧縮して種類数を返す // - O(N log N) int build() { assert(not is_built); sort(xs.begin(), xs.end()); xs.erase(unique(xs.begin(), xs.end()), xs.end()); is_built = true; return xs.size(); } // 座標圧縮前で i 番目に大きい値を返す (0-indexed) // - O(1) T operator[] (int i) const noexcept { assert(is_built); assert(0 <= i && i < (int)xs.size()); return xs[i]; } // 値 v に対応する座標圧縮後の値(番号)を返す // 値 v が元の配列に存在することを想定 // - O(log N) int operator() (T v) const noexcept { assert(is_built); auto it = lower_bound(xs.begin(), xs.end(), v); assert(it != xs.end() && *it == v); return distance(xs.begin(), it); } // 座標圧縮後の値の種類数を返す // - O(1) int size() const noexcept { assert(is_built); return xs.size(); } private: bool is_built = false; vector<T> xs; }; // clang-format on int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cout << fixed << setprecision(15); ll N; input(N); VVM X(N + 1, VM(N + 1)); REP (i, N + 1) { REP (j, N + 1) { ll x; cin >> x; X[i][j] = x; } } VVM dp1(N + 1, VM(N + 1)); REP (s, N + 1) { dp1[s][s] = 1; FOR (i, s, N + 1) { FOR (j, i + 1, N + 1) { dp1[s][j] += dp1[s][i] * X[i][j]; } } } int Q; cin >> Q; REP (_, Q) { ll K; input(K); VLL A2(K), B2(K), C2(K); REP (i, K) { input(A2[i], B2[i], C2[i]); } VLL A, B, C; map<pair<ll, ll>, ll> mp; REP (i, K) { mp[{A2[i], B2[i]}] += C2[i]; } for (auto [p, c] : mp) { auto [a, b] = p; A.push_back(a); B.push_back(b); C.push_back(c); } K = len(A); VVI edge(N + 1); REP (k, K) { edge[A[k]].push_back(k); } compress<int> z; VI idx; REP (k, K) { z.add(A[k]); z.add(B[k]); } z.add(0); z.add(N); int M = z.build(); VVM dp2(K + 1, VM(M)); dp2[0][0] = 1; REP (m, M - 1) { int i = z[m]; REP (k, K + 1) { dp2[k][M - 1] += dp2[k][m] * dp1[i][N]; } REP (j, K) { if (i <= A[j]) { int m2 = z(B[j]); REP (k, K) { dp2[k + 1][m2] += dp2[k][m] * dp1[i][A[j]] * C[j]; } } } } mint ans = dp1[0][N]; FOR (k, 1, K + 1) { ans += dp2[k][M - 1]; } print(ans.val()); } return 0; }