結果

問題 No.2311 [Cherry 5th Tune] Cherry Month
ユーザー tokusakuraitokusakurai
提出日時 2023-05-20 00:03:18
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 443 ms / 4,600 ms
コード長 15,672 bytes
コンパイル時間 2,944 ms
コンパイル使用メモリ 229,732 KB
実行使用メモリ 64,600 KB
最終ジャッジ日時 2024-12-20 03:13:02
合計ジャッジ時間 22,781 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 3 ms
6,820 KB
testcase_02 AC 269 ms
45,256 KB
testcase_03 AC 119 ms
18,816 KB
testcase_04 AC 121 ms
15,616 KB
testcase_05 AC 119 ms
15,104 KB
testcase_06 AC 148 ms
18,348 KB
testcase_07 AC 120 ms
14,848 KB
testcase_08 AC 209 ms
45,324 KB
testcase_09 AC 194 ms
31,456 KB
testcase_10 AC 184 ms
31,380 KB
testcase_11 AC 182 ms
35,460 KB
testcase_12 AC 237 ms
36,396 KB
testcase_13 AC 224 ms
34,908 KB
testcase_14 AC 220 ms
40,360 KB
testcase_15 AC 245 ms
40,048 KB
testcase_16 AC 134 ms
18,000 KB
testcase_17 AC 241 ms
41,668 KB
testcase_18 AC 213 ms
38,460 KB
testcase_19 AC 246 ms
40,784 KB
testcase_20 AC 228 ms
34,732 KB
testcase_21 AC 222 ms
24,640 KB
testcase_22 AC 205 ms
26,308 KB
testcase_23 AC 228 ms
42,252 KB
testcase_24 AC 221 ms
35,600 KB
testcase_25 AC 169 ms
34,084 KB
testcase_26 AC 255 ms
46,396 KB
testcase_27 AC 253 ms
64,600 KB
testcase_28 AC 263 ms
64,584 KB
testcase_29 AC 263 ms
64,600 KB
testcase_30 AC 156 ms
23,172 KB
testcase_31 AC 153 ms
23,212 KB
testcase_32 AC 156 ms
23,200 KB
testcase_33 AC 249 ms
60,700 KB
testcase_34 AC 246 ms
60,532 KB
testcase_35 AC 252 ms
60,628 KB
testcase_36 AC 305 ms
56,116 KB
testcase_37 AC 308 ms
55,896 KB
testcase_38 AC 304 ms
56,224 KB
testcase_39 AC 321 ms
57,812 KB
testcase_40 AC 305 ms
57,504 KB
testcase_41 AC 337 ms
58,164 KB
testcase_42 AC 298 ms
57,288 KB
testcase_43 AC 330 ms
58,748 KB
testcase_44 AC 287 ms
59,816 KB
testcase_45 AC 287 ms
59,756 KB
testcase_46 AC 217 ms
44,776 KB
testcase_47 AC 443 ms
60,036 KB
testcase_48 AC 249 ms
55,868 KB
testcase_49 AC 258 ms
56,016 KB
testcase_50 AC 260 ms
56,108 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < (n); i++)
#define per(i, n) for (int i = (n)-1; i >= 0; i--)
#define rep2(i, l, r) for (int i = (l); i < (r); i++)
#define per2(i, l, r) for (int i = (r)-1; i >= (l); i--)
#define each(e, v) for (auto &e : v)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
using ll = long long;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;

template <typename T>
using minheap = priority_queue<T, vector<T>, greater<T>>;

template <typename T>
using maxheap = priority_queue<T>;

template <typename T>
bool chmax(T &x, const T &y) {
    return (x < y) ? (x = y, true) : false;
}

template <typename T>
bool chmin(T &x, const T &y) {
    return (x > y) ? (x = y, true) : false;
}

template <typename T>
int flg(T x, int i) {
    return (x >> i) & 1;
}

int popcount(int x) { return __builtin_popcount(x); }
int popcount(ll x) { return __builtin_popcountll(x); }
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int botbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int botbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
void print(const vector<T> &v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
    if (v.empty()) cout << '\n';
}

template <typename T>
void printn(const vector<T> &v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++) cout << v[i] + x << '\n';
}

template <typename T>
int lb(const vector<T> &v, T x) {
    return lower_bound(begin(v), end(v), x) - begin(v);
}

template <typename T>
int ub(const vector<T> &v, T x) {
    return upper_bound(begin(v), end(v), x) - begin(v);
}

template <typename T>
void rearrange(vector<T> &v) {
    sort(begin(v), end(v));
    v.erase(unique(begin(v), end(v)), end(v));
}

template <typename T>
vector<int> id_sort(const vector<T> &v, bool greater = false) {
    int n = v.size();
    vector<int> ret(n);
    iota(begin(ret), end(ret), 0);
    sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; });
    return ret;
}

template <typename T>
void reorder(vector<T> &a, const vector<int> &ord) {
    int n = a.size();
    vector<T> b(n);
    for (int i = 0; i < n; i++) b[i] = a[ord[i]];
    swap(a, b);
}

template <typename T>
T floor(T x, T y) {
    assert(y != 0);
    if (y < 0) x = -x, y = -y;
    return (x >= 0 ? x / y : (x - y + 1) / y);
}

template <typename T>
T ceil(T x, T y) {
    assert(y != 0);
    if (y < 0) x = -x, y = -y;
    return (x >= 0 ? (x + y - 1) / y : x / y);
}

template <typename S, typename T>
pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) {
    return make_pair(p.first + q.first, p.second + q.second);
}

template <typename S, typename T>
pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) {
    return make_pair(p.first - q.first, p.second - q.second);
}

template <typename S, typename T>
istream &operator>>(istream &is, pair<S, T> &p) {
    S a;
    T b;
    is >> a >> b;
    p = make_pair(a, b);
    return is;
}

template <typename S, typename T>
ostream &operator<<(ostream &os, const pair<S, T> &p) {
    return os << p.first << ' ' << p.second;
}

struct io_setup {
    io_setup() {
        ios_base::sync_with_stdio(false);
        cin.tie(NULL);
        cout << fixed << setprecision(15);
    }
} io_setup;

constexpr int inf = (1 << 30) - 1;
constexpr ll INF = (1LL << 60) - 1;
// constexpr int MOD = 1000000007;
constexpr int MOD = 998244353;

struct Union_Find_Tree {
    vector<int> data;
    const int n;
    int cnt;

    Union_Find_Tree(int n) : data(n, -1), n(n), cnt(n) {}

    int root(int x) {
        if (data[x] < 0) return x;
        return data[x] = root(data[x]);
    }

    int operator[](int i) { return root(i); }

    bool unite(int x, int y) {
        x = root(x), y = root(y);
        if (x == y) return false;
        if (data[x] > data[y]) swap(x, y);
        data[x] += data[y], data[y] = x;
        cnt--;
        return true;
    }

    int size(int x) { return -data[root(x)]; }

    int count() { return cnt; };

    bool same(int x, int y) { return root(x) == root(y); }

    void clear() {
        cnt = n;
        fill(begin(data), end(data), -1);
    }
};

template <bool directed = false>
struct Euler_Tour_Subtree {
    struct edge {
        int to, id;
        edge(int to, int id) : to(to), id(id) {}
    };

    vector<vector<edge>> es;
    vector<int> l, r; // 部分木 i は区間 [l[i],r[i]) に対応する。また、頂点 i は l[i] に対応する。
    const int n;
    int m;

    Euler_Tour_Subtree(int n) : es(n), l(n, -1), r(n), n(n), m(0) {}

    void add_edge(int from, int to) {
        es[from].emplace_back(to, m);
        if (!directed) es[to].emplace_back(from, m);
        m++;
    }

    void _dfs(int now, int pre, int &cnt) {
        l[now] = cnt++;
        for (auto &e : es[now]) {
            if (e.to != pre) _dfs(e.to, now, cnt);
        }
        r[now] = cnt;
    }

    void build() {
        int cnt = 0;
        per(i, n) {
            if (l[i] == -1) _dfs(i, -1, cnt);
        }
    }
};

template <typename Operator>
struct Dual_Segment_Tree {
    using O = typename Operator::V;
    int n, m, height;
    vector<O> lazy;

    Dual_Segment_Tree(int n) : n(n) {
        m = 1, height = 0;
        while (m < n) m <<= 1, height++;
        lazy.assign(2 * m, Operator::id);
    }

    inline void eval(int i) {
        if (i < m && lazy[i] != Operator::id) {
            lazy[2 * i] = Operator::merge(lazy[2 * i], lazy[i]);
            lazy[2 * i + 1] = Operator::merge(lazy[2 * i + 1], lazy[i]);
            lazy[i] = Operator::id;
        }
    }

    inline void thrust(int i) {
        for (int j = height; j > 0; j--) eval(i >> j);
    }

    void update(int l, int r, const O &x) {
        l = max(l, 0), r = min(r, n);
        if (l >= r) return;
        l += m, r += m;
        thrust(l), thrust(r - 1);
        while (l < r) {
            if (l & 1) lazy[l] = Operator::merge(lazy[l], x), l++;
            if (r & 1) r--, lazy[r] = Operator::merge(lazy[r], x);
            l >>= 1, r >>= 1;
        }
    }

    O get(int i) {
        thrust(i + m);
        return lazy[i + m];
    }

    O operator[](int i) { return get(i); }
};

// sum
template <typename T>
struct Plus_Monoid {
    using V = T;
    static constexpr V merge(const V &a, const V &b) { return a + b; };
    static const V id;
};

template <typename T>
constexpr T Plus_Monoid<T>::id = 0;

// prod
template <typename T>
struct Product_Monoid {
    using V = T;
    static constexpr V merge(const V &a, const V &b) { return a * b; };
    static const V id;
};

template <typename T>
constexpr T Product_Monoid<T>::id = 1;

// min
template <typename T>
struct Min_Monoid {
    using V = T;
    static constexpr V merge(const V &a, const V &b) { return min(a, b); };
    static const V id;
};

template <typename T>
constexpr T Min_Monoid<T>::id = numeric_limits<T>::max() / 2;

// max
template <typename T>
struct Max_Monoid {
    using V = T;
    static constexpr V merge(V a, V b) { return max(a, b); };
    static const V id;
};

template <typename T>
constexpr T Max_Monoid<T>::id = -(numeric_limits<T>::max() / 2);

// 代入
template <typename T>
struct Update_Monoid {
    using V = T;
    static constexpr V merge(const V &a, const V &b) {
        if (a == id) return b;
        if (b == id) return a;
        return b;
    }
    static const V id;
};

template <typename T>
constexpr T Update_Monoid<T>::id = numeric_limits<T>::max();

// min count (T:最大値の型、S:個数の型)
template <typename T, typename S>
struct Min_Count_Monoid {
    using V = pair<T, S>;
    static constexpr V merge(const V &a, const V &b) {
        if (a.first < b.first) return a;
        if (a.first > b.first) return b;
        return V(a.first, a.second + b.second);
    }
    static const V id;
};

template <typename T, typename S>
constexpr pair<T, S> Min_Count_Monoid<T, S>::id = make_pair(numeric_limits<T>::max() / 2, 0);

// max count (T:最大値の型、S:個数の型)
template <typename T, typename S>
struct Max_Count_Monoid {
    using V = pair<T, S>;
    static constexpr V merge(const V &a, const V &b) {
        if (a.first > b.first) return a;
        if (a.first < b.first) return b;
        return V(a.first, a.second + b.second);
    }
    static const V id;
};

template <typename T, typename S>
constexpr pair<T, S> Max_Count_Monoid<T, S>::id = make_pair(-(numeric_limits<T>::max() / 2), 0);

// 一次関数 ax+b の合成 (左から順に作用)
template <typename T>
struct Affine_Monoid {
    using V = pair<T, T>;
    static constexpr V merge(const V &a, const V &b) { return V(a.first * b.first, a.second * b.first + b.second); };
    static const V id;
};

template <typename T>
constexpr pair<T, T> Affine_Monoid<T>::id = make_pair(1, 0);

// モノイドの直積
template <typename Monoid_1, typename Monoid_2>
struct Cartesian_Product_Monoid {
    using V1 = typename Monoid_1::V;
    using V2 = typename Monoid_2::V;
    using V = pair<V1, V2>;
    static constexpr V merge(const V &a, const V &b) { return V(Monoid_1::merge(a.first, b.first), Monoid_2::merge(a.second, b.second)); }
    static const V id;
};

template <typename Monoid_1, typename Monoid_2>
constexpr pair<typename Monoid_1::V, typename Monoid_2::V> Cartesian_Product_Monoid<Monoid_1, Monoid_2>::id = make_pair(Monoid_1::id, Monoid_2::id);

// range add range min
template <typename T>
struct Min_Plus_Acted_Monoid {
    using Monoid = Min_Monoid<T>;
    using Operator = Plus_Monoid<T>;
    using M = T;
    using O = T;
    static constexpr M merge(const M &a, const O &b) { return a + b; };
};

// range add range max
template <typename T>
struct Max_Plus_Acted_Monoid {
    using Monoid = Max_Monoid<T>;
    using Operator = Plus_Monoid<T>;
    using M = T;
    using O = T;
    static constexpr M merge(const M &a, const O &b) { return a + b; };
};

// range add range min count (T:最小値の型、S:個数の型)
template <typename T, typename S>
struct Min_Count_Add_Acted_Monoid {
    using Monoid = Min_Count_Monoid<T, S>;
    using Operator = Plus_Monoid<T>;
    using M = pair<T, S>;
    using O = T;
    static constexpr M merge(const M &a, const O &b) { return make_pair(a.first + b, a.second); };
};

// range add range max count (T:最大値の型、S:個数の型)
template <typename T, typename S>
struct Max_Count_Add_Acted_Monoid {
    using Monoid = Max_Count_Monoid<T, S>;
    using Operator = Plus_Monoid<T>;
    using M = pair<T, S>;
    using O = T;
    static constexpr M merge(const M &a, const O &b) { return make_pair(a.first + b, a.second); };
};

// range add range sum
template <typename T>
struct Plus_Plus_Acted_Monoid {
    using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<int>>;
    using Operator = Plus_Monoid<T>;
    using M = pair<T, int>;
    using O = T;
    static constexpr M merge(const M &a, const O &b) { return M(a.first + b * a.second, a.second); }
};

// range update range sum
template <typename T>
struct Plus_Update_Acted_Monoid {
    using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<int>>;
    using Operator = Update_Monoid<T>;
    using M = pair<T, int>;
    using O = T;
    static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : M(b * a.second, a.second); }
};

// range update range min
template <typename T>
struct Min_Update_Acted_Monoid {
    using Monoid = Min_Monoid<T>;
    using Operator = Update_Monoid<T>;
    using M = T;
    using O = T;
    static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : b; }
};

// range update range max
template <typename T>
struct Max_Update_Acted_Monoid {
    using Monoid = Max_Monoid<T>;
    using Operator = Update_Monoid<T>;
    using M = T;
    using O = T;
    static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : b; }
};

// range affine range sum
template <typename T>
struct Plus_Affine_Acted_Monoid {
    using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<T>>;
    using Operator = Affine_Monoid<T>;
    using M = pair<T, T>;
    using O = pair<T, T>;
    static constexpr M merge(const M &a, const O &b) { return M(b.first * a.first + b.second * a.second, a.second); };
};

struct Data_1 {
    constexpr Data_1() {}
};

struct Monoid_1 {
    using V = Data_1;
    static V merge(V a, V b) { return a; }
    static const V id;
};

constexpr Monoid_1::V Monoid_1::id = Data_1();

struct Func_1 {
    constexpr Func_1() {}
};

struct Operator_1 {
    using V = Func_1;
    static V merge(V a, V b) { return a; }
    static const V id;
};

constexpr Operator_1::V Operator_1::id = Func_1();

struct Acted_Monoid_1 {
    using Monoid = Monoid_1;
    using Operator = Operator_1;
    using M = typename Monoid::V;
    using O = typename Operator::V;
    static M merge(M a, O b) { return a; }
};

void solve() {
    int N;
    cin >> N;

    vector<ll> a(N);
    rep(i, N) cin >> a[i];

    int T;
    cin >> T;

    Union_Find_Tree uf(N);
    vector<int> id(N);
    rep(i, N) id[i] = i;

    Euler_Tour_Subtree<true> G(2 * N);
    int K = N;

    vector<int> t(T), x(T), y(T);
    vector<int> deg(N, 0);

    rep(i, T) {
        cin >> t[i] >> x[i] >> y[i];
        x[i]--;
        if (t[i] == 1) {
            y[i]--;
            deg[x[i]]++, deg[y[i]]++;

            int u = uf[x[i]], v = uf[y[i]];
            if (u != v) {
                G.add_edge(K, id[u]);
                G.add_edge(K, id[v]);
                // cout << K MM id[u] MM id[v] << '\n';
                uf.unite(u, v);
                id[uf[u]] = K;
                K++;
            }
        }
    }
    G.build();
    // print(G.l);

    // 次数の閾値
    int D = 500;

    int Q;
    cin >> Q;

    vector<vector<pii>> qs(T + 1);
    rep(i, Q) {
        int s, v;
        cin >> s >> v;
        v--;
        qs[s].eb(v, i);
    }

    Dual_Segment_Tree<Plus_Monoid<ll>> seg(2 * N);
    vector<ll> ans(Q, -1);
    vector<ll> lazy(N, 0);
    uf.clear();
    rep(i, N) id[i] = i;
    K = N;

    vector<vector<int>> es(N), es2(N);

    rep(i, T + 1) {
        for (auto [v, id] : qs[i]) {
            // cout << "! " << v + 1 MM id + 1 << '\n';
            ll tmp = a[v];
            tmp -= seg[G.l[v]];
            each(e, es2[v]) tmp -= lazy[e];
            ans[id] = max(tmp, 0LL);
        }

        if (i == T) break;

        if (t[i] == 1) {
            es[x[i]].eb(y[i]), es[y[i]].eb(x[i]);
            if (deg[y[i]] > D) es2[x[i]].eb(y[i]), a[x[i]] += lazy[y[i]];
            if (deg[x[i]] > D) es2[y[i]].eb(x[i]), a[y[i]] += lazy[x[i]];
            int u = uf[x[i]], v = uf[y[i]];
            if (u != v) {
                uf.unite(u, v);
                id[uf[u]] = K;
                K++;
            }
        } else if (t[i] == 2) {
            a[x[i]] -= y[i];
        } else if (t[i] == 3) {
            a[x[i]] -= y[i];
            if (deg[x[i]] <= D) {
                each(e, es[x[i]]) a[e] -= y[i];
            } else {
                lazy[x[i]] += y[i];
            }
        } else {
            int u = uf[x[i]];
            int v = id[u];
            // cout << "! " << i MM v << '\n';
            seg.update(G.l[v], G.r[v], y[i]);
        }
    }

    printn(ans);
}

int main() {
    int T = 1;
    // cin >> T;
    while (T--) solve();
}
0