結果

問題 No.2311 [Cherry 5th Tune] Cherry Month
ユーザー tokusakuraitokusakurai
提出日時 2023-05-20 00:03:18
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 339 ms / 4,600 ms
コード長 15,672 bytes
コンパイル時間 2,357 ms
コンパイル使用メモリ 222,096 KB
最終ジャッジ日時 2025-02-13 03:32:58
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 51
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < (n); i++)
#define per(i, n) for (int i = (n)-1; i >= 0; i--)
#define rep2(i, l, r) for (int i = (l); i < (r); i++)
#define per2(i, l, r) for (int i = (r)-1; i >= (l); i--)
#define each(e, v) for (auto &e : v)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
using ll = long long;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;
template <typename T>
using minheap = priority_queue<T, vector<T>, greater<T>>;
template <typename T>
using maxheap = priority_queue<T>;
template <typename T>
bool chmax(T &x, const T &y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T>
bool chmin(T &x, const T &y) {
return (x > y) ? (x = y, true) : false;
}
template <typename T>
int flg(T x, int i) {
return (x >> i) & 1;
}
int popcount(int x) { return __builtin_popcount(x); }
int popcount(ll x) { return __builtin_popcountll(x); }
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int botbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int botbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
void print(const vector<T> &v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
if (v.empty()) cout << '\n';
}
template <typename T>
void printn(const vector<T> &v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cout << v[i] + x << '\n';
}
template <typename T>
int lb(const vector<T> &v, T x) {
return lower_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, T x) {
return upper_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
void rearrange(vector<T> &v) {
sort(begin(v), end(v));
v.erase(unique(begin(v), end(v)), end(v));
}
template <typename T>
vector<int> id_sort(const vector<T> &v, bool greater = false) {
int n = v.size();
vector<int> ret(n);
iota(begin(ret), end(ret), 0);
sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; });
return ret;
}
template <typename T>
void reorder(vector<T> &a, const vector<int> &ord) {
int n = a.size();
vector<T> b(n);
for (int i = 0; i < n; i++) b[i] = a[ord[i]];
swap(a, b);
}
template <typename T>
T floor(T x, T y) {
assert(y != 0);
if (y < 0) x = -x, y = -y;
return (x >= 0 ? x / y : (x - y + 1) / y);
}
template <typename T>
T ceil(T x, T y) {
assert(y != 0);
if (y < 0) x = -x, y = -y;
return (x >= 0 ? (x + y - 1) / y : x / y);
}
template <typename S, typename T>
pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) {
return make_pair(p.first + q.first, p.second + q.second);
}
template <typename S, typename T>
pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) {
return make_pair(p.first - q.first, p.second - q.second);
}
template <typename S, typename T>
istream &operator>>(istream &is, pair<S, T> &p) {
S a;
T b;
is >> a >> b;
p = make_pair(a, b);
return is;
}
template <typename S, typename T>
ostream &operator<<(ostream &os, const pair<S, T> &p) {
return os << p.first << ' ' << p.second;
}
struct io_setup {
io_setup() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout << fixed << setprecision(15);
}
} io_setup;
constexpr int inf = (1 << 30) - 1;
constexpr ll INF = (1LL << 60) - 1;
// constexpr int MOD = 1000000007;
constexpr int MOD = 998244353;
struct Union_Find_Tree {
vector<int> data;
const int n;
int cnt;
Union_Find_Tree(int n) : data(n, -1), n(n), cnt(n) {}
int root(int x) {
if (data[x] < 0) return x;
return data[x] = root(data[x]);
}
int operator[](int i) { return root(i); }
bool unite(int x, int y) {
x = root(x), y = root(y);
if (x == y) return false;
if (data[x] > data[y]) swap(x, y);
data[x] += data[y], data[y] = x;
cnt--;
return true;
}
int size(int x) { return -data[root(x)]; }
int count() { return cnt; };
bool same(int x, int y) { return root(x) == root(y); }
void clear() {
cnt = n;
fill(begin(data), end(data), -1);
}
};
template <bool directed = false>
struct Euler_Tour_Subtree {
struct edge {
int to, id;
edge(int to, int id) : to(to), id(id) {}
};
vector<vector<edge>> es;
vector<int> l, r; // i [l[i],r[i]) i l[i]
const int n;
int m;
Euler_Tour_Subtree(int n) : es(n), l(n, -1), r(n), n(n), m(0) {}
void add_edge(int from, int to) {
es[from].emplace_back(to, m);
if (!directed) es[to].emplace_back(from, m);
m++;
}
void _dfs(int now, int pre, int &cnt) {
l[now] = cnt++;
for (auto &e : es[now]) {
if (e.to != pre) _dfs(e.to, now, cnt);
}
r[now] = cnt;
}
void build() {
int cnt = 0;
per(i, n) {
if (l[i] == -1) _dfs(i, -1, cnt);
}
}
};
template <typename Operator>
struct Dual_Segment_Tree {
using O = typename Operator::V;
int n, m, height;
vector<O> lazy;
Dual_Segment_Tree(int n) : n(n) {
m = 1, height = 0;
while (m < n) m <<= 1, height++;
lazy.assign(2 * m, Operator::id);
}
inline void eval(int i) {
if (i < m && lazy[i] != Operator::id) {
lazy[2 * i] = Operator::merge(lazy[2 * i], lazy[i]);
lazy[2 * i + 1] = Operator::merge(lazy[2 * i + 1], lazy[i]);
lazy[i] = Operator::id;
}
}
inline void thrust(int i) {
for (int j = height; j > 0; j--) eval(i >> j);
}
void update(int l, int r, const O &x) {
l = max(l, 0), r = min(r, n);
if (l >= r) return;
l += m, r += m;
thrust(l), thrust(r - 1);
while (l < r) {
if (l & 1) lazy[l] = Operator::merge(lazy[l], x), l++;
if (r & 1) r--, lazy[r] = Operator::merge(lazy[r], x);
l >>= 1, r >>= 1;
}
}
O get(int i) {
thrust(i + m);
return lazy[i + m];
}
O operator[](int i) { return get(i); }
};
// sum
template <typename T>
struct Plus_Monoid {
using V = T;
static constexpr V merge(const V &a, const V &b) { return a + b; };
static const V id;
};
template <typename T>
constexpr T Plus_Monoid<T>::id = 0;
// prod
template <typename T>
struct Product_Monoid {
using V = T;
static constexpr V merge(const V &a, const V &b) { return a * b; };
static const V id;
};
template <typename T>
constexpr T Product_Monoid<T>::id = 1;
// min
template <typename T>
struct Min_Monoid {
using V = T;
static constexpr V merge(const V &a, const V &b) { return min(a, b); };
static const V id;
};
template <typename T>
constexpr T Min_Monoid<T>::id = numeric_limits<T>::max() / 2;
// max
template <typename T>
struct Max_Monoid {
using V = T;
static constexpr V merge(V a, V b) { return max(a, b); };
static const V id;
};
template <typename T>
constexpr T Max_Monoid<T>::id = -(numeric_limits<T>::max() / 2);
//
template <typename T>
struct Update_Monoid {
using V = T;
static constexpr V merge(const V &a, const V &b) {
if (a == id) return b;
if (b == id) return a;
return b;
}
static const V id;
};
template <typename T>
constexpr T Update_Monoid<T>::id = numeric_limits<T>::max();
// min count (TS)
template <typename T, typename S>
struct Min_Count_Monoid {
using V = pair<T, S>;
static constexpr V merge(const V &a, const V &b) {
if (a.first < b.first) return a;
if (a.first > b.first) return b;
return V(a.first, a.second + b.second);
}
static const V id;
};
template <typename T, typename S>
constexpr pair<T, S> Min_Count_Monoid<T, S>::id = make_pair(numeric_limits<T>::max() / 2, 0);
// max count (TS)
template <typename T, typename S>
struct Max_Count_Monoid {
using V = pair<T, S>;
static constexpr V merge(const V &a, const V &b) {
if (a.first > b.first) return a;
if (a.first < b.first) return b;
return V(a.first, a.second + b.second);
}
static const V id;
};
template <typename T, typename S>
constexpr pair<T, S> Max_Count_Monoid<T, S>::id = make_pair(-(numeric_limits<T>::max() / 2), 0);
// ax+b ()
template <typename T>
struct Affine_Monoid {
using V = pair<T, T>;
static constexpr V merge(const V &a, const V &b) { return V(a.first * b.first, a.second * b.first + b.second); };
static const V id;
};
template <typename T>
constexpr pair<T, T> Affine_Monoid<T>::id = make_pair(1, 0);
//
template <typename Monoid_1, typename Monoid_2>
struct Cartesian_Product_Monoid {
using V1 = typename Monoid_1::V;
using V2 = typename Monoid_2::V;
using V = pair<V1, V2>;
static constexpr V merge(const V &a, const V &b) { return V(Monoid_1::merge(a.first, b.first), Monoid_2::merge(a.second, b.second)); }
static const V id;
};
template <typename Monoid_1, typename Monoid_2>
constexpr pair<typename Monoid_1::V, typename Monoid_2::V> Cartesian_Product_Monoid<Monoid_1, Monoid_2>::id = make_pair(Monoid_1::id, Monoid_2::id);
// range add range min
template <typename T>
struct Min_Plus_Acted_Monoid {
using Monoid = Min_Monoid<T>;
using Operator = Plus_Monoid<T>;
using M = T;
using O = T;
static constexpr M merge(const M &a, const O &b) { return a + b; };
};
// range add range max
template <typename T>
struct Max_Plus_Acted_Monoid {
using Monoid = Max_Monoid<T>;
using Operator = Plus_Monoid<T>;
using M = T;
using O = T;
static constexpr M merge(const M &a, const O &b) { return a + b; };
};
// range add range min count (TS)
template <typename T, typename S>
struct Min_Count_Add_Acted_Monoid {
using Monoid = Min_Count_Monoid<T, S>;
using Operator = Plus_Monoid<T>;
using M = pair<T, S>;
using O = T;
static constexpr M merge(const M &a, const O &b) { return make_pair(a.first + b, a.second); };
};
// range add range max count (TS)
template <typename T, typename S>
struct Max_Count_Add_Acted_Monoid {
using Monoid = Max_Count_Monoid<T, S>;
using Operator = Plus_Monoid<T>;
using M = pair<T, S>;
using O = T;
static constexpr M merge(const M &a, const O &b) { return make_pair(a.first + b, a.second); };
};
// range add range sum
template <typename T>
struct Plus_Plus_Acted_Monoid {
using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<int>>;
using Operator = Plus_Monoid<T>;
using M = pair<T, int>;
using O = T;
static constexpr M merge(const M &a, const O &b) { return M(a.first + b * a.second, a.second); }
};
// range update range sum
template <typename T>
struct Plus_Update_Acted_Monoid {
using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<int>>;
using Operator = Update_Monoid<T>;
using M = pair<T, int>;
using O = T;
static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : M(b * a.second, a.second); }
};
// range update range min
template <typename T>
struct Min_Update_Acted_Monoid {
using Monoid = Min_Monoid<T>;
using Operator = Update_Monoid<T>;
using M = T;
using O = T;
static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : b; }
};
// range update range max
template <typename T>
struct Max_Update_Acted_Monoid {
using Monoid = Max_Monoid<T>;
using Operator = Update_Monoid<T>;
using M = T;
using O = T;
static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : b; }
};
// range affine range sum
template <typename T>
struct Plus_Affine_Acted_Monoid {
using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<T>>;
using Operator = Affine_Monoid<T>;
using M = pair<T, T>;
using O = pair<T, T>;
static constexpr M merge(const M &a, const O &b) { return M(b.first * a.first + b.second * a.second, a.second); };
};
struct Data_1 {
constexpr Data_1() {}
};
struct Monoid_1 {
using V = Data_1;
static V merge(V a, V b) { return a; }
static const V id;
};
constexpr Monoid_1::V Monoid_1::id = Data_1();
struct Func_1 {
constexpr Func_1() {}
};
struct Operator_1 {
using V = Func_1;
static V merge(V a, V b) { return a; }
static const V id;
};
constexpr Operator_1::V Operator_1::id = Func_1();
struct Acted_Monoid_1 {
using Monoid = Monoid_1;
using Operator = Operator_1;
using M = typename Monoid::V;
using O = typename Operator::V;
static M merge(M a, O b) { return a; }
};
void solve() {
int N;
cin >> N;
vector<ll> a(N);
rep(i, N) cin >> a[i];
int T;
cin >> T;
Union_Find_Tree uf(N);
vector<int> id(N);
rep(i, N) id[i] = i;
Euler_Tour_Subtree<true> G(2 * N);
int K = N;
vector<int> t(T), x(T), y(T);
vector<int> deg(N, 0);
rep(i, T) {
cin >> t[i] >> x[i] >> y[i];
x[i]--;
if (t[i] == 1) {
y[i]--;
deg[x[i]]++, deg[y[i]]++;
int u = uf[x[i]], v = uf[y[i]];
if (u != v) {
G.add_edge(K, id[u]);
G.add_edge(K, id[v]);
// cout << K MM id[u] MM id[v] << '\n';
uf.unite(u, v);
id[uf[u]] = K;
K++;
}
}
}
G.build();
// print(G.l);
//
int D = 500;
int Q;
cin >> Q;
vector<vector<pii>> qs(T + 1);
rep(i, Q) {
int s, v;
cin >> s >> v;
v--;
qs[s].eb(v, i);
}
Dual_Segment_Tree<Plus_Monoid<ll>> seg(2 * N);
vector<ll> ans(Q, -1);
vector<ll> lazy(N, 0);
uf.clear();
rep(i, N) id[i] = i;
K = N;
vector<vector<int>> es(N), es2(N);
rep(i, T + 1) {
for (auto [v, id] : qs[i]) {
// cout << "! " << v + 1 MM id + 1 << '\n';
ll tmp = a[v];
tmp -= seg[G.l[v]];
each(e, es2[v]) tmp -= lazy[e];
ans[id] = max(tmp, 0LL);
}
if (i == T) break;
if (t[i] == 1) {
es[x[i]].eb(y[i]), es[y[i]].eb(x[i]);
if (deg[y[i]] > D) es2[x[i]].eb(y[i]), a[x[i]] += lazy[y[i]];
if (deg[x[i]] > D) es2[y[i]].eb(x[i]), a[y[i]] += lazy[x[i]];
int u = uf[x[i]], v = uf[y[i]];
if (u != v) {
uf.unite(u, v);
id[uf[u]] = K;
K++;
}
} else if (t[i] == 2) {
a[x[i]] -= y[i];
} else if (t[i] == 3) {
a[x[i]] -= y[i];
if (deg[x[i]] <= D) {
each(e, es[x[i]]) a[e] -= y[i];
} else {
lazy[x[i]] += y[i];
}
} else {
int u = uf[x[i]];
int v = id[u];
// cout << "! " << i MM v << '\n';
seg.update(G.l[v], G.r[v], y[i]);
}
}
printn(ans);
}
int main() {
int T = 1;
// cin >> T;
while (T--) solve();
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0