結果
問題 | No.2311 [Cherry 5th Tune] Cherry Month |
ユーザー |
|
提出日時 | 2023-05-20 00:03:18 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 339 ms / 4,600 ms |
コード長 | 15,672 bytes |
コンパイル時間 | 2,357 ms |
コンパイル使用メモリ | 222,096 KB |
最終ジャッジ日時 | 2025-02-13 03:32:58 |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 51 |
ソースコード
#include <bits/stdc++.h>using namespace std;#define rep(i, n) for (int i = 0; i < (n); i++)#define per(i, n) for (int i = (n)-1; i >= 0; i--)#define rep2(i, l, r) for (int i = (l); i < (r); i++)#define per2(i, l, r) for (int i = (r)-1; i >= (l); i--)#define each(e, v) for (auto &e : v)#define MM << " " <<#define pb push_back#define eb emplace_back#define all(x) begin(x), end(x)#define rall(x) rbegin(x), rend(x)#define sz(x) (int)x.size()using ll = long long;using pii = pair<int, int>;using pil = pair<int, ll>;using pli = pair<ll, int>;using pll = pair<ll, ll>;template <typename T>using minheap = priority_queue<T, vector<T>, greater<T>>;template <typename T>using maxheap = priority_queue<T>;template <typename T>bool chmax(T &x, const T &y) {return (x < y) ? (x = y, true) : false;}template <typename T>bool chmin(T &x, const T &y) {return (x > y) ? (x = y, true) : false;}template <typename T>int flg(T x, int i) {return (x >> i) & 1;}int popcount(int x) { return __builtin_popcount(x); }int popcount(ll x) { return __builtin_popcountll(x); }int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }int botbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }int botbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }template <typename T>void print(const vector<T> &v, T x = 0) {int n = v.size();for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');if (v.empty()) cout << '\n';}template <typename T>void printn(const vector<T> &v, T x = 0) {int n = v.size();for (int i = 0; i < n; i++) cout << v[i] + x << '\n';}template <typename T>int lb(const vector<T> &v, T x) {return lower_bound(begin(v), end(v), x) - begin(v);}template <typename T>int ub(const vector<T> &v, T x) {return upper_bound(begin(v), end(v), x) - begin(v);}template <typename T>void rearrange(vector<T> &v) {sort(begin(v), end(v));v.erase(unique(begin(v), end(v)), end(v));}template <typename T>vector<int> id_sort(const vector<T> &v, bool greater = false) {int n = v.size();vector<int> ret(n);iota(begin(ret), end(ret), 0);sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; });return ret;}template <typename T>void reorder(vector<T> &a, const vector<int> &ord) {int n = a.size();vector<T> b(n);for (int i = 0; i < n; i++) b[i] = a[ord[i]];swap(a, b);}template <typename T>T floor(T x, T y) {assert(y != 0);if (y < 0) x = -x, y = -y;return (x >= 0 ? x / y : (x - y + 1) / y);}template <typename T>T ceil(T x, T y) {assert(y != 0);if (y < 0) x = -x, y = -y;return (x >= 0 ? (x + y - 1) / y : x / y);}template <typename S, typename T>pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) {return make_pair(p.first + q.first, p.second + q.second);}template <typename S, typename T>pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) {return make_pair(p.first - q.first, p.second - q.second);}template <typename S, typename T>istream &operator>>(istream &is, pair<S, T> &p) {S a;T b;is >> a >> b;p = make_pair(a, b);return is;}template <typename S, typename T>ostream &operator<<(ostream &os, const pair<S, T> &p) {return os << p.first << ' ' << p.second;}struct io_setup {io_setup() {ios_base::sync_with_stdio(false);cin.tie(NULL);cout << fixed << setprecision(15);}} io_setup;constexpr int inf = (1 << 30) - 1;constexpr ll INF = (1LL << 60) - 1;// constexpr int MOD = 1000000007;constexpr int MOD = 998244353;struct Union_Find_Tree {vector<int> data;const int n;int cnt;Union_Find_Tree(int n) : data(n, -1), n(n), cnt(n) {}int root(int x) {if (data[x] < 0) return x;return data[x] = root(data[x]);}int operator[](int i) { return root(i); }bool unite(int x, int y) {x = root(x), y = root(y);if (x == y) return false;if (data[x] > data[y]) swap(x, y);data[x] += data[y], data[y] = x;cnt--;return true;}int size(int x) { return -data[root(x)]; }int count() { return cnt; };bool same(int x, int y) { return root(x) == root(y); }void clear() {cnt = n;fill(begin(data), end(data), -1);}};template <bool directed = false>struct Euler_Tour_Subtree {struct edge {int to, id;edge(int to, int id) : to(to), id(id) {}};vector<vector<edge>> es;vector<int> l, r; // 部分木 i は区間 [l[i],r[i]) に対応する。また、頂点 i は l[i] に対応する。const int n;int m;Euler_Tour_Subtree(int n) : es(n), l(n, -1), r(n), n(n), m(0) {}void add_edge(int from, int to) {es[from].emplace_back(to, m);if (!directed) es[to].emplace_back(from, m);m++;}void _dfs(int now, int pre, int &cnt) {l[now] = cnt++;for (auto &e : es[now]) {if (e.to != pre) _dfs(e.to, now, cnt);}r[now] = cnt;}void build() {int cnt = 0;per(i, n) {if (l[i] == -1) _dfs(i, -1, cnt);}}};template <typename Operator>struct Dual_Segment_Tree {using O = typename Operator::V;int n, m, height;vector<O> lazy;Dual_Segment_Tree(int n) : n(n) {m = 1, height = 0;while (m < n) m <<= 1, height++;lazy.assign(2 * m, Operator::id);}inline void eval(int i) {if (i < m && lazy[i] != Operator::id) {lazy[2 * i] = Operator::merge(lazy[2 * i], lazy[i]);lazy[2 * i + 1] = Operator::merge(lazy[2 * i + 1], lazy[i]);lazy[i] = Operator::id;}}inline void thrust(int i) {for (int j = height; j > 0; j--) eval(i >> j);}void update(int l, int r, const O &x) {l = max(l, 0), r = min(r, n);if (l >= r) return;l += m, r += m;thrust(l), thrust(r - 1);while (l < r) {if (l & 1) lazy[l] = Operator::merge(lazy[l], x), l++;if (r & 1) r--, lazy[r] = Operator::merge(lazy[r], x);l >>= 1, r >>= 1;}}O get(int i) {thrust(i + m);return lazy[i + m];}O operator[](int i) { return get(i); }};// sumtemplate <typename T>struct Plus_Monoid {using V = T;static constexpr V merge(const V &a, const V &b) { return a + b; };static const V id;};template <typename T>constexpr T Plus_Monoid<T>::id = 0;// prodtemplate <typename T>struct Product_Monoid {using V = T;static constexpr V merge(const V &a, const V &b) { return a * b; };static const V id;};template <typename T>constexpr T Product_Monoid<T>::id = 1;// mintemplate <typename T>struct Min_Monoid {using V = T;static constexpr V merge(const V &a, const V &b) { return min(a, b); };static const V id;};template <typename T>constexpr T Min_Monoid<T>::id = numeric_limits<T>::max() / 2;// maxtemplate <typename T>struct Max_Monoid {using V = T;static constexpr V merge(V a, V b) { return max(a, b); };static const V id;};template <typename T>constexpr T Max_Monoid<T>::id = -(numeric_limits<T>::max() / 2);// 代入template <typename T>struct Update_Monoid {using V = T;static constexpr V merge(const V &a, const V &b) {if (a == id) return b;if (b == id) return a;return b;}static const V id;};template <typename T>constexpr T Update_Monoid<T>::id = numeric_limits<T>::max();// min count (T:最大値の型、S:個数の型)template <typename T, typename S>struct Min_Count_Monoid {using V = pair<T, S>;static constexpr V merge(const V &a, const V &b) {if (a.first < b.first) return a;if (a.first > b.first) return b;return V(a.first, a.second + b.second);}static const V id;};template <typename T, typename S>constexpr pair<T, S> Min_Count_Monoid<T, S>::id = make_pair(numeric_limits<T>::max() / 2, 0);// max count (T:最大値の型、S:個数の型)template <typename T, typename S>struct Max_Count_Monoid {using V = pair<T, S>;static constexpr V merge(const V &a, const V &b) {if (a.first > b.first) return a;if (a.first < b.first) return b;return V(a.first, a.second + b.second);}static const V id;};template <typename T, typename S>constexpr pair<T, S> Max_Count_Monoid<T, S>::id = make_pair(-(numeric_limits<T>::max() / 2), 0);// 一次関数 ax+b の合成 (左から順に作用)template <typename T>struct Affine_Monoid {using V = pair<T, T>;static constexpr V merge(const V &a, const V &b) { return V(a.first * b.first, a.second * b.first + b.second); };static const V id;};template <typename T>constexpr pair<T, T> Affine_Monoid<T>::id = make_pair(1, 0);// モノイドの直積template <typename Monoid_1, typename Monoid_2>struct Cartesian_Product_Monoid {using V1 = typename Monoid_1::V;using V2 = typename Monoid_2::V;using V = pair<V1, V2>;static constexpr V merge(const V &a, const V &b) { return V(Monoid_1::merge(a.first, b.first), Monoid_2::merge(a.second, b.second)); }static const V id;};template <typename Monoid_1, typename Monoid_2>constexpr pair<typename Monoid_1::V, typename Monoid_2::V> Cartesian_Product_Monoid<Monoid_1, Monoid_2>::id = make_pair(Monoid_1::id, Monoid_2::id);// range add range mintemplate <typename T>struct Min_Plus_Acted_Monoid {using Monoid = Min_Monoid<T>;using Operator = Plus_Monoid<T>;using M = T;using O = T;static constexpr M merge(const M &a, const O &b) { return a + b; };};// range add range maxtemplate <typename T>struct Max_Plus_Acted_Monoid {using Monoid = Max_Monoid<T>;using Operator = Plus_Monoid<T>;using M = T;using O = T;static constexpr M merge(const M &a, const O &b) { return a + b; };};// range add range min count (T:最小値の型、S:個数の型)template <typename T, typename S>struct Min_Count_Add_Acted_Monoid {using Monoid = Min_Count_Monoid<T, S>;using Operator = Plus_Monoid<T>;using M = pair<T, S>;using O = T;static constexpr M merge(const M &a, const O &b) { return make_pair(a.first + b, a.second); };};// range add range max count (T:最大値の型、S:個数の型)template <typename T, typename S>struct Max_Count_Add_Acted_Monoid {using Monoid = Max_Count_Monoid<T, S>;using Operator = Plus_Monoid<T>;using M = pair<T, S>;using O = T;static constexpr M merge(const M &a, const O &b) { return make_pair(a.first + b, a.second); };};// range add range sumtemplate <typename T>struct Plus_Plus_Acted_Monoid {using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<int>>;using Operator = Plus_Monoid<T>;using M = pair<T, int>;using O = T;static constexpr M merge(const M &a, const O &b) { return M(a.first + b * a.second, a.second); }};// range update range sumtemplate <typename T>struct Plus_Update_Acted_Monoid {using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<int>>;using Operator = Update_Monoid<T>;using M = pair<T, int>;using O = T;static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : M(b * a.second, a.second); }};// range update range mintemplate <typename T>struct Min_Update_Acted_Monoid {using Monoid = Min_Monoid<T>;using Operator = Update_Monoid<T>;using M = T;using O = T;static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : b; }};// range update range maxtemplate <typename T>struct Max_Update_Acted_Monoid {using Monoid = Max_Monoid<T>;using Operator = Update_Monoid<T>;using M = T;using O = T;static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : b; }};// range affine range sumtemplate <typename T>struct Plus_Affine_Acted_Monoid {using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<T>>;using Operator = Affine_Monoid<T>;using M = pair<T, T>;using O = pair<T, T>;static constexpr M merge(const M &a, const O &b) { return M(b.first * a.first + b.second * a.second, a.second); };};struct Data_1 {constexpr Data_1() {}};struct Monoid_1 {using V = Data_1;static V merge(V a, V b) { return a; }static const V id;};constexpr Monoid_1::V Monoid_1::id = Data_1();struct Func_1 {constexpr Func_1() {}};struct Operator_1 {using V = Func_1;static V merge(V a, V b) { return a; }static const V id;};constexpr Operator_1::V Operator_1::id = Func_1();struct Acted_Monoid_1 {using Monoid = Monoid_1;using Operator = Operator_1;using M = typename Monoid::V;using O = typename Operator::V;static M merge(M a, O b) { return a; }};void solve() {int N;cin >> N;vector<ll> a(N);rep(i, N) cin >> a[i];int T;cin >> T;Union_Find_Tree uf(N);vector<int> id(N);rep(i, N) id[i] = i;Euler_Tour_Subtree<true> G(2 * N);int K = N;vector<int> t(T), x(T), y(T);vector<int> deg(N, 0);rep(i, T) {cin >> t[i] >> x[i] >> y[i];x[i]--;if (t[i] == 1) {y[i]--;deg[x[i]]++, deg[y[i]]++;int u = uf[x[i]], v = uf[y[i]];if (u != v) {G.add_edge(K, id[u]);G.add_edge(K, id[v]);// cout << K MM id[u] MM id[v] << '\n';uf.unite(u, v);id[uf[u]] = K;K++;}}}G.build();// print(G.l);// 次数の閾値int D = 500;int Q;cin >> Q;vector<vector<pii>> qs(T + 1);rep(i, Q) {int s, v;cin >> s >> v;v--;qs[s].eb(v, i);}Dual_Segment_Tree<Plus_Monoid<ll>> seg(2 * N);vector<ll> ans(Q, -1);vector<ll> lazy(N, 0);uf.clear();rep(i, N) id[i] = i;K = N;vector<vector<int>> es(N), es2(N);rep(i, T + 1) {for (auto [v, id] : qs[i]) {// cout << "! " << v + 1 MM id + 1 << '\n';ll tmp = a[v];tmp -= seg[G.l[v]];each(e, es2[v]) tmp -= lazy[e];ans[id] = max(tmp, 0LL);}if (i == T) break;if (t[i] == 1) {es[x[i]].eb(y[i]), es[y[i]].eb(x[i]);if (deg[y[i]] > D) es2[x[i]].eb(y[i]), a[x[i]] += lazy[y[i]];if (deg[x[i]] > D) es2[y[i]].eb(x[i]), a[y[i]] += lazy[x[i]];int u = uf[x[i]], v = uf[y[i]];if (u != v) {uf.unite(u, v);id[uf[u]] = K;K++;}} else if (t[i] == 2) {a[x[i]] -= y[i];} else if (t[i] == 3) {a[x[i]] -= y[i];if (deg[x[i]] <= D) {each(e, es[x[i]]) a[e] -= y[i];} else {lazy[x[i]] += y[i];}} else {int u = uf[x[i]];int v = id[u];// cout << "! " << i MM v << '\n';seg.update(G.l[v], G.r[v], y[i]);}}printn(ans);}int main() {int T = 1;// cin >> T;while (T--) solve();}