結果
問題 | No.2309 [Cherry 5th Tune D] 夏の先取り |
ユーザー | 👑 p-adic |
提出日時 | 2023-05-20 02:23:44 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 73 ms / 3,000 ms |
コード長 | 12,396 bytes |
コンパイル時間 | 3,142 ms |
コンパイル使用メモリ | 220,332 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-06-01 02:29:29 |
合計ジャッジ時間 | 5,908 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 4 ms
6,812 KB |
testcase_01 | AC | 30 ms
6,940 KB |
testcase_02 | AC | 28 ms
6,944 KB |
testcase_03 | AC | 27 ms
6,944 KB |
testcase_04 | AC | 26 ms
6,940 KB |
testcase_05 | AC | 24 ms
6,940 KB |
testcase_06 | AC | 24 ms
6,940 KB |
testcase_07 | AC | 25 ms
6,940 KB |
testcase_08 | AC | 28 ms
6,940 KB |
testcase_09 | AC | 27 ms
6,940 KB |
testcase_10 | AC | 24 ms
6,944 KB |
testcase_11 | AC | 25 ms
6,944 KB |
testcase_12 | AC | 26 ms
6,940 KB |
testcase_13 | AC | 29 ms
6,944 KB |
testcase_14 | AC | 24 ms
6,940 KB |
testcase_15 | AC | 27 ms
6,944 KB |
testcase_16 | AC | 22 ms
6,940 KB |
testcase_17 | AC | 27 ms
6,944 KB |
testcase_18 | AC | 26 ms
6,940 KB |
testcase_19 | AC | 23 ms
6,944 KB |
testcase_20 | AC | 24 ms
6,940 KB |
testcase_21 | AC | 22 ms
6,940 KB |
testcase_22 | AC | 21 ms
6,944 KB |
testcase_23 | AC | 23 ms
6,948 KB |
testcase_24 | AC | 32 ms
6,940 KB |
testcase_25 | AC | 26 ms
6,940 KB |
testcase_26 | AC | 32 ms
6,944 KB |
testcase_27 | AC | 26 ms
6,940 KB |
testcase_28 | AC | 26 ms
6,944 KB |
testcase_29 | AC | 28 ms
6,940 KB |
testcase_30 | AC | 30 ms
6,940 KB |
testcase_31 | AC | 58 ms
6,940 KB |
testcase_32 | AC | 59 ms
6,944 KB |
testcase_33 | AC | 58 ms
6,944 KB |
testcase_34 | AC | 57 ms
6,940 KB |
testcase_35 | AC | 58 ms
6,940 KB |
testcase_36 | AC | 8 ms
6,940 KB |
testcase_37 | AC | 3 ms
6,940 KB |
testcase_38 | AC | 5 ms
6,940 KB |
testcase_39 | AC | 4 ms
6,940 KB |
testcase_40 | AC | 5 ms
6,940 KB |
testcase_41 | AC | 73 ms
6,944 KB |
testcase_42 | AC | 73 ms
6,944 KB |
testcase_43 | AC | 29 ms
6,940 KB |
testcase_44 | AC | 27 ms
6,944 KB |
testcase_45 | AC | 25 ms
6,944 KB |
testcase_46 | AC | 25 ms
6,944 KB |
testcase_47 | AC | 9 ms
6,940 KB |
testcase_48 | AC | 8 ms
6,944 KB |
testcase_49 | AC | 17 ms
6,944 KB |
ソースコード
// #define _GLIBCXX_DEBUG #ifndef DEBUG #pragma GCC optimize ( "O3" ) #pragma GCC optimize( "unroll-loops" ) #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) #endif #include <bits/stdc++.h> using namespace std; using uint = unsigned int; using ll = long long; using ull = unsigned long long; #define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) ) #define TYPE_OF( VAR ) remove_const<remove_reference<decltype( VAR )>::type >::type #define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ) #define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE #define CIN( LL , A ) LL A; cin >> A #define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) ) #define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX ) #define GETLINE( A ) string A; getline( cin , A ) #define GETLINE_SEPARATE( A , SEPARATOR ) string A; getline( cin , A , SEPARATOR ) #define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) #define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ ) #define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- ) #define FOR_ITR( ARRAY , ITR , END ) for( auto ITR = ARRAY .begin() , END = ARRAY .end() ; ITR != END ; ITR ++ ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES ) #define QUIT return 0 #define COUT( ANSWER ) cout << ( ANSWER ) << "\n" #define RETURN( ANSWER ) COUT( ANSWER ); QUIT #define SET_PRECISION( PRECISION ) cout << fixed << setprecision( PRECISION ) #define DOUBLE( PRECISION , ANSWER ) SET_PRECISION << ( ANSWER ) << "\n"; QUIT #ifdef DEBUG #define CERR( ANSWER ) cerr << ANSWER << "\n"; #else #define CERR( ANSWER ) #endif template <typename T> inline T Absolute( const T& a ){ return a > 0 ? a : -a; } template <typename T> inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : ( a % p ) + p; } // ARGUMENTの型がintやuintでないように注意 #define POWER( ANSWER , ARGUMENT , EXPONENT ) \ TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \ { \ TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \ TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \ ll ANSWER{ 1 }; \ { \ ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( MODULO + ( ( ARGUMENT ) % MODULO ) ) % MODULO; \ TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_I , LENGTH , MODULO ) \ static ll ANSWER[LENGTH]; \ static ll ANSWER_INV[LENGTH]; \ static ll INVERSE[LENGTH]; \ { \ ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \ FOREQ( i , 1 , MAX_I ){ \ ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= MODULO; \ } \ ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ FOREQ( i , 2 , MAX_I ){ \ ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = MODULO - ( ( ( MODULO / i ) * INVERSE[MODULO % i] ) % MODULO ) ) %= MODULO; \ } \ } \ // 通常の二分探索その1 // EXPRESSIONがANSWERの狭義単調増加関数の時、EXPRESSION >= TARGETを満たす最小の整数を返す。 // 広義単調増加関数を扱いたい時は等号成立の処理を消して続く>に等号を付ける。 #define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ ll ANSWER; \ { \ ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \ ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \ ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \ while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \ VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \ break; \ } else { \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){ \ VARIABLE_FOR_BINARY_SEARCH_U = ANSWER; \ } else { \ VARIABLE_FOR_BINARY_SEARCH_L = ANSWER + 1; \ } \ ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ } \ } \ } \ // 通常の二分探索その2 // EXPRESSIONがANSWERの狭義単調増加関数の時、EXPRESSION <= TARGETを満たす最大の整数を返す。 // 広義単調増加関数を扱いたい時は等号成立の処理を消して続く<に等号を付ける。 #define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ ll ANSWER; \ { \ ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \ ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \ ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \ while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \ VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \ break; \ } else { \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH < 0 ){ \ VARIABLE_FOR_BINARY_SEARCH_L = ANSWER; \ } else { \ VARIABLE_FOR_BINARY_SEARCH_U = ANSWER - 1; \ } \ ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + 1 + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ } \ } \ } \ // 通常の二分探索その3 // EXPRESSIONがANSWERの狭義単調減少関数の時、EXPRESSION >= TARGETを満たす最大の整数を返す。 // 広義単調増加関数を扱いたい時は等号成立の処理を消して続く>に等号を付ける。 #define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ ll ANSWER; \ { \ ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \ ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \ ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \ while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \ VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \ break; \ } else { \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){ \ VARIABLE_FOR_BINARY_SEARCH_L = ANSWER; \ } else { \ VARIABLE_FOR_BINARY_SEARCH_U = ANSWER - 1; \ } \ ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + 1 + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ } \ } \ } \ // 通常の二分探索その4 // EXPRESSIONがANSWERの狭義単調減少関数の時、EXPRESSION <= TARGETを満たす最小の整数を返す。 // 広義単調増加関数を扱いたい時は等号成立の処理を消して続く<に等号を付ける。 #define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ ll ANSWER; \ { \ ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \ ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \ ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \ while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \ VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \ break; \ } else { \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH < 0 ){ \ VARIABLE_FOR_BINARY_SEARCH_U = ANSWER; \ } else { \ VARIABLE_FOR_BINARY_SEARCH_L = ANSWER + 1; \ } \ ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ } \ } \ } \ // 二進法の二分探索 // EXPRESSIONがANSWERの狭義単調増加関数の時、EXPRESSION <= TARGETを満たす最大の整数を返す。 #define BBS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ ll ANSWER = MINIMUM; \ { \ ll VARIABLE_FOR_POWER_FOR_BINARY_SEARCH = 1; \ ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( MAXIMUM ) - ANSWER; \ while( VARIABLE_FOR_POWER_FOR_BINARY_SEARCH <= VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ){ \ VARIABLE_FOR_POWER_FOR_BINARY_SEARCH *= 2; \ } \ VARIABLE_FOR_POWER_FOR_BINARY_SEARCH /= 2; \ ll VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH = ANSWER; \ while( VARIABLE_FOR_POWER_FOR_BINARY_SEARCH != 0 ){ \ ANSWER = VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH + VARIABLE_FOR_POWER_FOR_BINARY_SEARCH; \ VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \ VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH = ANSWER; \ break; \ } else if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH < 0 ){ \ VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH = ANSWER; \ } \ VARIABLE_FOR_POWER_FOR_BINARY_SEARCH /= 2; \ } \ ANSWER = VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH; \ } \ // 圧縮用 #define TE template #define TY typename #define US using #define ST static #define IN inline #define CL class #define PU public #define OP operator #define CE constexpr #define CO const #define NE noexcept #define RE return #define WH while #define VO void #define VE vector #define LI list #define BE begin #define EN end #define SZ size #define MO move #define TH this #define CRI CO int& #define CRUI CO uint& #define CRL CO ll& inline bool Check( int ( &x )[4] , int ( &B )[3] ) { return x[0] >= 0 && x[1] >= 0 && x[2] >= 0 && x[3] >= 0 && x[0] + x[2] + x[3] <= B[0] && x[0] + x[1] + x[3] <= B[1] && x[1] + x[2] + x[3] <= B[2]; } inline ll Get( int ( &x )[4] , ll ( &X )[4] ) { ll answer = 0; FOR( j , 0 , 4 ){ answer += x[j] * X[j]; } return answer; } int main() { UNTIE; CEXPR( int , bound_T , 100000 ); CIN_ASSERT( T , 1 , bound_T ); // CEXPR( int , bound_N , 100000 ); // CEXPR( ll , bound_N , 1000000000 ); // CEXPR( ll , bound_N , 1000000000000000000 ); // maximise xX+yY+zZ+wW under x+z+w,x+y+w,y+z+w<=A,B,C int A[3]; ll X[4]; int x[4]; REPEAT( T ){ cin >> A[0] >> A[1] >> A[2]; cin >> X[0] >> X[1] >> X[2] >> X[3]; ll answer = 0; ll temp; FOR( i , 0 , 3 ){ x[i] = 0; FOR( j , 0 , 3 ){ int& Aj = A[j]; FOREQ( y , 0 , Aj ){ int B[3]; FOR( k , 0 , 3 ){ B[k] = k == j ? y : A[k]; } int& sum = B[ ( i + 2 ) % 3 ]; x[ ( i + 1 ) % 3 ] = sum - B[ i % 3 ]; x[ ( i + 2 ) % 3 ] = sum - B[ ( i + 1 ) % 3 ]; x[3] = sum - x[ ( i + 1 ) % 3 ] - x[ ( i + 2 ) % 3 ]; if( Check( x , B ) ){ if( answer < ( temp = Get( x , X ) ) ){ answer = temp; // CERR( temp << ":" << x[0] << "," << x[1] << "," << x[2] << "," << x[3] ); } } } } } FOR( w , 0 , 2 ){ x[3] = w; FOR( j , 0 , 3 ){ int& Aj = A[j]; FOREQ( y , 0 , Aj ){ int B[3]; FOR( k , 0 , 3 ){ B[k] = k == j ? y : A[k]; } x[0] = ( B[0] + B[1] - B[2] - w ) / 2; x[1] = B[1] - x[0] - w; x[2] = B[0] - x[0] - w; if( Check( x , B ) ){ if( answer < ( temp = Get( x , X ) ) ){ answer = temp; // CERR( temp << ":" << x[0] << "," << x[1] << "," << x[2] << "," << x[3] ); } } } } } COUT( answer ); } QUIT; }