結果

問題 No.2309 [Cherry 5th Tune D] 夏の先取り
ユーザー 👑 p-adicp-adic
提出日時 2023-05-20 02:23:44
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 73 ms / 3,000 ms
コード長 12,396 bytes
コンパイル時間 3,142 ms
コンパイル使用メモリ 220,332 KB
実行使用メモリ 6,948 KB
最終ジャッジ日時 2024-06-01 02:29:29
合計ジャッジ時間 5,908 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 4 ms
6,812 KB
testcase_01 AC 30 ms
6,940 KB
testcase_02 AC 28 ms
6,944 KB
testcase_03 AC 27 ms
6,944 KB
testcase_04 AC 26 ms
6,940 KB
testcase_05 AC 24 ms
6,940 KB
testcase_06 AC 24 ms
6,940 KB
testcase_07 AC 25 ms
6,940 KB
testcase_08 AC 28 ms
6,940 KB
testcase_09 AC 27 ms
6,940 KB
testcase_10 AC 24 ms
6,944 KB
testcase_11 AC 25 ms
6,944 KB
testcase_12 AC 26 ms
6,940 KB
testcase_13 AC 29 ms
6,944 KB
testcase_14 AC 24 ms
6,940 KB
testcase_15 AC 27 ms
6,944 KB
testcase_16 AC 22 ms
6,940 KB
testcase_17 AC 27 ms
6,944 KB
testcase_18 AC 26 ms
6,940 KB
testcase_19 AC 23 ms
6,944 KB
testcase_20 AC 24 ms
6,940 KB
testcase_21 AC 22 ms
6,940 KB
testcase_22 AC 21 ms
6,944 KB
testcase_23 AC 23 ms
6,948 KB
testcase_24 AC 32 ms
6,940 KB
testcase_25 AC 26 ms
6,940 KB
testcase_26 AC 32 ms
6,944 KB
testcase_27 AC 26 ms
6,940 KB
testcase_28 AC 26 ms
6,944 KB
testcase_29 AC 28 ms
6,940 KB
testcase_30 AC 30 ms
6,940 KB
testcase_31 AC 58 ms
6,940 KB
testcase_32 AC 59 ms
6,944 KB
testcase_33 AC 58 ms
6,944 KB
testcase_34 AC 57 ms
6,940 KB
testcase_35 AC 58 ms
6,940 KB
testcase_36 AC 8 ms
6,940 KB
testcase_37 AC 3 ms
6,940 KB
testcase_38 AC 5 ms
6,940 KB
testcase_39 AC 4 ms
6,940 KB
testcase_40 AC 5 ms
6,940 KB
testcase_41 AC 73 ms
6,944 KB
testcase_42 AC 73 ms
6,944 KB
testcase_43 AC 29 ms
6,940 KB
testcase_44 AC 27 ms
6,944 KB
testcase_45 AC 25 ms
6,944 KB
testcase_46 AC 25 ms
6,944 KB
testcase_47 AC 9 ms
6,940 KB
testcase_48 AC 8 ms
6,944 KB
testcase_49 AC 17 ms
6,944 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// #define _GLIBCXX_DEBUG
#ifndef DEBUG
  #pragma GCC optimize ( "O3" )
  #pragma GCC optimize( "unroll-loops" )
  #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
#endif
#include <bits/stdc++.h>
using namespace std;

using uint = unsigned int;
using ll = long long;
using ull = unsigned long long;

#define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) )
#define TYPE_OF( VAR ) remove_const<remove_reference<decltype( VAR )>::type >::type
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE
#define CIN( LL , A ) LL A; cin >> A
#define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) )
#define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX )
#define GETLINE( A ) string A; getline( cin , A )
#define GETLINE_SEPARATE( A , SEPARATOR ) string A; getline( cin , A , SEPARATOR )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- )
#define FOR_ITR( ARRAY , ITR , END ) for( auto ITR = ARRAY .begin() , END = ARRAY .end() ; ITR != END ; ITR ++ )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES )
#define QUIT return 0
#define COUT( ANSWER ) cout << ( ANSWER ) << "\n"
#define RETURN( ANSWER ) COUT( ANSWER ); QUIT
#define SET_PRECISION( PRECISION ) cout << fixed << setprecision( PRECISION )
#define DOUBLE( PRECISION , ANSWER ) SET_PRECISION << ( ANSWER ) << "\n"; QUIT

#ifdef DEBUG
  #define CERR( ANSWER ) cerr << ANSWER << "\n";
#else
  #define CERR( ANSWER ) 
#endif

template <typename T> inline T Absolute( const T& a ){ return a > 0 ? a : -a; }
template <typename T> inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : ( a % p ) + p; }

// ARGUMENTの型がintやuintでないように注意
#define POWER( ANSWER , ARGUMENT , EXPONENT )				\
  TYPE_OF( ARGUMENT ) ANSWER{ 1 };					\
  {									\
    TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT );	\
    TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT );	\
    while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){			\
      if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){			\
	ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER;			\
      }									\
      ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER;	\
      EXPONENT_FOR_SQUARE_FOR_POWER /= 2;				\
    }									\
  }									\

#define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO )		\
  ll ANSWER{ 1 };							\
  {									\
    ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( MODULO + ( ( ARGUMENT ) % MODULO ) ) % MODULO; \
    TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT );	\
    while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){			\
      if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){			\
	ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO;	\
      }									\
      ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \
      EXPONENT_FOR_SQUARE_FOR_POWER /= 2;				\
    }									\
  }									\

#define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_I , LENGTH , MODULO ) \
  static ll ANSWER[LENGTH];						\
  static ll ANSWER_INV[LENGTH];						\
  static ll INVERSE[LENGTH];						\
  {									\
    ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1;				\
    ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL;			\
    FOREQ( i , 1 , MAX_I ){						\
      ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= MODULO; \
    }									\
    ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \
    FOREQ( i , 2 , MAX_I ){						\
      ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = MODULO - ( ( ( MODULO / i ) * INVERSE[MODULO % i] ) % MODULO ) ) %= MODULO; \
    }									\
  }									\

// 通常の二分探索その1
// EXPRESSIONがANSWERの狭義単調増加関数の時、EXPRESSION >= TARGETを満たす最小の整数を返す。
// 広義単調増加関数を扱いたい時は等号成立の処理を消して続く>に等号を付ける。
#define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET )		\
  ll ANSWER;								\
  {									\
    ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM;				\
    ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM;				\
    ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
    ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \
    while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \
      VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \
      if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){		\
	break;								\
      } else {								\
	if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){		\
	  VARIABLE_FOR_BINARY_SEARCH_U = ANSWER;			\
	} else {							\
	  VARIABLE_FOR_BINARY_SEARCH_L = ANSWER + 1;			\
	}								\
	ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
      }									\
    }									\
  }									\

// 通常の二分探索その2
// EXPRESSIONがANSWERの狭義単調増加関数の時、EXPRESSION <= TARGETを満たす最大の整数を返す。
// 広義単調増加関数を扱いたい時は等号成立の処理を消して続く<に等号を付ける。
#define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET )		\
  ll ANSWER;								\
  {									\
    ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM;				\
    ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM;				\
    ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
    ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \
    while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \
      VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \
      if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){		\
	break;								\
      } else {								\
	if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH < 0 ){		\
	  VARIABLE_FOR_BINARY_SEARCH_L = ANSWER;			\
	} else {							\
	  VARIABLE_FOR_BINARY_SEARCH_U = ANSWER - 1;			\
	}								\
	ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + 1 + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
      }									\
    }									\
  }									\

// 通常の二分探索その3
// EXPRESSIONがANSWERの狭義単調減少関数の時、EXPRESSION >= TARGETを満たす最大の整数を返す。
// 広義単調増加関数を扱いたい時は等号成立の処理を消して続く>に等号を付ける。
#define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET )		\
  ll ANSWER;								\
  {									\
    ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM;				\
    ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM;				\
    ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
    ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \
    while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \
      VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \
      if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){		\
	break;								\
      } else {								\
	if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){		\
	  VARIABLE_FOR_BINARY_SEARCH_L = ANSWER;			\
	} else {							\
	  VARIABLE_FOR_BINARY_SEARCH_U = ANSWER - 1;			\
	}								\
	ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + 1 + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
      }									\
    }									\
  }									\

// 通常の二分探索その4
// EXPRESSIONがANSWERの狭義単調減少関数の時、EXPRESSION <= TARGETを満たす最小の整数を返す。
// 広義単調増加関数を扱いたい時は等号成立の処理を消して続く<に等号を付ける。
#define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET )		\
  ll ANSWER;								\
  {									\
    ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM;				\
    ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM;				\
    ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
    ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \
    while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \
      VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \
      if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){		\
	break;								\
      } else {								\
	if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH < 0 ){		\
	  VARIABLE_FOR_BINARY_SEARCH_U = ANSWER;			\
	} else {							\
	  VARIABLE_FOR_BINARY_SEARCH_L = ANSWER + 1;			\
	}								\
	ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
      }									\
    }									\
  }									\



// 二進法の二分探索
// EXPRESSIONがANSWERの狭義単調増加関数の時、EXPRESSION <= TARGETを満たす最大の整数を返す。
#define BBS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET )		\
  ll ANSWER = MINIMUM;							\
  {									\
    ll VARIABLE_FOR_POWER_FOR_BINARY_SEARCH = 1;			\
    ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( MAXIMUM ) - ANSWER; \
    while( VARIABLE_FOR_POWER_FOR_BINARY_SEARCH <= VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ){ \
      VARIABLE_FOR_POWER_FOR_BINARY_SEARCH *= 2;			\
    }									\
    VARIABLE_FOR_POWER_FOR_BINARY_SEARCH /= 2;				\
    ll VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH = ANSWER;			\
    while( VARIABLE_FOR_POWER_FOR_BINARY_SEARCH != 0 ){			\
      ANSWER = VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH + VARIABLE_FOR_POWER_FOR_BINARY_SEARCH; \
      VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \
      if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){		\
	VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH = ANSWER;			\
	break;								\
      } else if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH < 0 ){	\
	VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH = ANSWER;			\
      }									\
      VARIABLE_FOR_POWER_FOR_BINARY_SEARCH /= 2;			\
    }									\
    ANSWER = VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH;			\
  }									\

// 圧縮用
#define TE template
#define TY typename
#define US using
#define ST static
#define IN inline
#define CL class
#define PU public
#define OP operator
#define CE constexpr
#define CO const
#define NE noexcept
#define RE return 
#define WH while
#define VO void
#define VE vector
#define LI list
#define BE begin
#define EN end
#define SZ size
#define MO move
#define TH this
#define CRI CO int&
#define CRUI CO uint&
#define CRL CO ll&

inline bool Check( int ( &x )[4] , int ( &B )[3] )
{
  return x[0] >= 0 && x[1] >= 0 && x[2] >= 0 && x[3] >= 0 &&
    x[0] + x[2] + x[3] <= B[0] && x[0] + x[1] + x[3] <= B[1] && x[1] + x[2] + x[3] <= B[2];
}
inline ll Get( int ( &x )[4] , ll ( &X )[4] )
{
  ll answer = 0;
  FOR( j , 0 , 4 ){
    answer += x[j] * X[j];
  }
  return answer;
}
int main()
{
  UNTIE;
  CEXPR( int , bound_T , 100000 );
  CIN_ASSERT( T , 1 , bound_T );
  // CEXPR( int , bound_N , 100000 );
  // CEXPR( ll , bound_N , 1000000000 );
  // CEXPR( ll , bound_N , 1000000000000000000 );
  // maximise xX+yY+zZ+wW under x+z+w,x+y+w,y+z+w<=A,B,C
  int A[3];
  ll X[4];
  int x[4];
  REPEAT( T ){
    cin >> A[0] >> A[1] >> A[2];
    cin >> X[0] >> X[1] >> X[2] >> X[3];
    ll answer = 0;
    ll temp;
    FOR( i , 0 , 3 ){
      x[i] = 0;
      FOR( j , 0 , 3 ){
	int& Aj = A[j];
	FOREQ( y , 0 , Aj ){
	  int B[3];
	  FOR( k , 0 , 3 ){
	    B[k] = k == j ? y : A[k];
	  }
	  int& sum = B[ ( i + 2 ) % 3 ];
	  x[ ( i + 1 ) % 3 ] = sum - B[ i % 3 ];
	  x[ ( i + 2 ) % 3 ] = sum - B[ ( i + 1 ) % 3 ];
	  x[3] = sum - x[ ( i + 1 ) % 3 ] - x[ ( i + 2 ) % 3 ];
	  if( Check( x , B ) ){
	    if( answer < ( temp = Get( x , X ) ) ){
	      answer = temp;
	      // CERR( temp << ":" << x[0] << "," << x[1] << "," << x[2] << "," << x[3] );
	    }
	  }
	}
      }
    }
    FOR( w , 0 , 2 ){
      x[3] = w;
      FOR( j , 0 , 3 ){
	int& Aj = A[j];
	FOREQ( y , 0 , Aj ){
	  int B[3];
	  FOR( k , 0 , 3 ){
	    B[k] = k == j ? y : A[k];
	  }
	  x[0] = ( B[0] + B[1] - B[2] - w ) / 2;
	  x[1] = B[1] - x[0] - w;
	  x[2] = B[0] - x[0] - w;
	  if( Check( x , B ) ){
	    if( answer < ( temp = Get( x , X ) ) ){
	      answer = temp;
	      // CERR( temp << ":" << x[0] << "," << x[1] << "," << x[2] << "," << x[3] );
	    }
	  }
	}
      }
    }
    COUT( answer );
  }
  QUIT;
}
0