結果

問題 No.2305 [Cherry 5th Tune N] Until That Day...
ユーザー siganaisiganai
提出日時 2023-05-20 19:23:49
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 28,903 bytes
コンパイル時間 4,081 ms
コンパイル使用メモリ 246,720 KB
実行使用メモリ 6,948 KB
最終ジャッジ日時 2024-06-01 07:25:45
合計ジャッジ時間 6,101 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,940 KB
testcase_02 AC 2 ms
6,944 KB
testcase_03 WA -
testcase_04 AC 2 ms
6,944 KB
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 AC 3 ms
6,944 KB
testcase_16 AC 3 ms
6,944 KB
testcase_17 AC 2 ms
6,940 KB
testcase_18 WA -
testcase_19 AC 4 ms
6,940 KB
testcase_20 AC 51 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "main.cpp"
//#pragma GCC target("avx")
//#pragma GCC optimize("O3")
//#pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>

#ifdef LOCAL
#include <debug.hpp>
#define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__)
#else
#define debug(...) (static_cast<void>(0))
#endif
using namespace std;
using ll = long long;
using ld = long double;
using pll = pair<ll, ll>;
using pii = pair<int, int>;
using vi = vector<int>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using vl = vector<ll>;
using vvl = vector<vl>;
using vvvl = vector<vvl>;
using vpii = vector<pii>;
using vpll = vector<pll>;
using vs = vector<string>;
template<class T> using pq = priority_queue<T, vector<T>, greater<T>>;
#define overload4(_1, _2, _3, _4, name, ...) name
#define overload3(a,b,c,name,...) name
#define rep1(n) for (ll UNUSED_NUMBER = 0; UNUSED_NUMBER < (n); ++UNUSED_NUMBER)
#define rep2(i, n) for (ll i = 0; i < (n); ++i)
#define rep3(i, a, b) for (ll i = (a); i < (b); ++i)
#define rep4(i, a, b, c) for (ll i = (a); i < (b); i += (c))
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)
#define rrep1(n) for(ll i = (n) - 1;i >= 0;i--)
#define rrep2(i,n) for(ll i = (n) - 1;i >= 0;i--)
#define rrep3(i,a,b) for(ll i = (b) - 1;i >= (a);i--)
#define rrep4(i,a,b,c) for(ll i = (a) + ((b)-(a)-1) / (c) * (c);i >= (a);i -= c)
#define rrep(...) overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__)
#define all1(i) begin(i) , end(i)
#define all2(i,a) begin(i) , begin(i) + a
#define all3(i,a,b) begin(i) + a , begin(i) + b
#define all(...) overload3(__VA_ARGS__, all3, all2, all1)(__VA_ARGS__)
#define sum(...) accumulate(all(__VA_ARGS__),0LL)
template<class T> bool chmin(T &a, const T &b){ if(a > b){ a = b; return 1; } else return 0; }
template<class T> bool chmax(T &a, const T &b){ if(a < b){ a = b; return 1; } else return 0; }
template<class T> auto min(const T& a){ return *min_element(all(a)); }
template<class T> auto max(const T& a){ return *max_element(all(a)); }
template<class... Ts> void in(Ts&... t);
#define INT(...) int __VA_ARGS__; in(__VA_ARGS__)
#define LL(...) ll __VA_ARGS__; in(__VA_ARGS__)
#define STR(...) string __VA_ARGS__; in(__VA_ARGS__)
#define CHR(...) char __VA_ARGS__; in(__VA_ARGS__)
#define DBL(...) double __VA_ARGS__; in(__VA_ARGS__)
#define LD(...) ld __VA_ARGS__; in(__VA_ARGS__)
#define VEC(type, name, size) vector<type> name(size); in(name)
#define VV(type, name, h, w) vector<vector<type>> name(h, vector<type>(w)); in(name)
ll intpow(ll a, ll b){ ll ans = 1; while(b){if(b & 1) ans *= a; a *= a; b /= 2;} return ans;}
ll modpow(ll a, ll b, ll p){ ll ans = 1; a %= p;if(a < 0) a += p;while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; }
ll GCD(ll a,ll b) { if(a == 0 || b == 0) return 0; if(a % b == 0) return b; else return GCD(b,a%b);}
ll LCM(ll a,ll b) { if(a == 0) return b; if(b == 0) return a;return a / GCD(a,b) * b;}
namespace IO{
#define VOID(a) decltype(void(a))
struct setting{ setting(){cin.tie(nullptr); ios::sync_with_stdio(false);fixed(cout); cout.precision(12);}} setting;
template<int I> struct P : P<I-1>{};
template<> struct P<0>{};
template<class T> void i(T& t){ i(t, P<3>{}); }
void i(vector<bool>::reference t, P<3>){ int a; i(a); t = a; }
template<class T> auto i(T& t, P<2>) -> VOID(cin >> t){ cin >> t; }
template<class T> auto i(T& t, P<1>) -> VOID(begin(t)){ for(auto&& x : t) i(x); }
template<class T, size_t... idx> void ituple(T& t, index_sequence<idx...>){
    in(get<idx>(t)...);}
template<class T> auto i(T& t, P<0>) -> VOID(tuple_size<T>{}){
    ituple(t, make_index_sequence<tuple_size<T>::value>{});}
#undef VOID
}
#define unpack(a) (void)initializer_list<int>{(a, 0)...}
template<class... Ts> void in(Ts&... t){ unpack(IO :: i(t)); }
#undef unpack
static const double PI = 3.1415926535897932;
template <class F> struct REC {
    F f;
    REC(F &&f_) : f(forward<F>(f_)) {}
    template <class... Args> auto operator()(Args &&...args) const { return f(*this, forward<Args>(args)...); }};
//constexpr int mod = 1000000007;
constexpr int mod = 998244353;
#line 2 "library/modint/Modint.hpp"
template <int mod>
struct Modint{
    int x;
    Modint():x(0) {}
    Modint(long long y): x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
    Modint &operator += (const Modint &p) {
        if((x += p.x) >= mod) x -= mod;
        return *this;}
    Modint &operator -= (const Modint &p) {
        if ((x += mod - p.x) >= mod) x -= mod;
        return *this;}
    Modint &operator *= (const Modint &p) {
        x = (int)(1LL * x * p.x % mod);
        return *this;}
    Modint &operator /= (const Modint &p) {
        *this *= p.inverse();
        return *this;}
    Modint operator -() const{return Modint(-x);}
    Modint operator +(const Modint &p) const {return Modint(*this) += p;}
    Modint operator -(const Modint &p) const {return Modint(*this) -= p;}
    Modint operator *(const Modint &p) const {return Modint(*this) *= p;}
    Modint operator /(const Modint &p) const {return Modint(*this) /= p;}
    Modint &operator ++() {if(x == mod - 1) x = 0; else x++; return *this;}
    Modint &operator --() {if(x == 0) x = mod - 1; else x--; return *this;} 
    bool operator == (const Modint &p) const {return x == p.x;}
    bool operator != (const Modint &p) const {return x != p.x;}
    Modint inverse() const {
        int a = x, b = mod, u = 1, v = 0, t;
        while (b > 0) {
            t = a / b;
            swap(a -= t * b, b);
            swap(u -= t * v, v);
        }
        return Modint(u);}
    Modint pow(long long n) const {
        Modint ret(1), mul(x);
        while (n > 0) {
            if (n & 1) ret *= mul;
            mul *= mul;
            n >>= 1;
        }
        return ret;}
    friend ostream &operator<<(ostream &os, const Modint &p) { return os << p.x; }
    friend istream &operator>>(istream &is, Modint &a) {
        long long t;
        is >> t;
        a = Modint<mod>(t);
        return (is);
    }
    static constexpr int get_mod() {return mod;}
};
#line 87 "main.cpp"
using mint = Modint<mod>;
using vm = vector<mint>;
using vvm = vector<vm>;
using vvvm = vector<vvm>;
#line 2 "library/graph/graph-template.hpp"
template <typename T> 
struct Edge {
	int from, to;
	T cost;
	Edge() = default;
	Edge(int _to, T _cost) : from(-1), to(_to), cost(_cost) {}
	Edge(int _from, int _to, T _cost) : from(_from), to(_to), cost(_cost) {}
	bool operator < (const Edge &a) const { return cost < a.cost; }
	bool operator > (const Edge &a) const { return cost > a.cost; }
    Edge &operator = (const int &x) {
        to = x;
        return *this;
    }
    operator int() const { return to; }
    friend ostream operator<<(ostream &os, Edge &edge) { return os << edge.to; }
};
 
template <typename T>
using Edges = vector<Edge<T>>;
template <typename T>
using Wgraph = vector<Edges<T>>;
using Ugraph = vector<vector<int>>;
Ugraph uinput(int N, int M = -1, bool is_directed = false, int origin = 1) {
    Ugraph g(N);
    if (M == -1) M = N - 1;
    while(M--) {
        int a,b;
        cin >> a >> b;
        a -= origin, b -= origin;
        g[a].push_back(b);
        if(!is_directed) g[b].push_back(a);
    }
    return g;
}
template <typename T>
Wgraph<T> winput(int N, int M = -1, bool is_directed = false,int origin = 1) {
    Wgraph<T> g(N);
    if (M == -1) M = N - 1;
    while(M--) {
        int a,b;
        T c;
        cin >> a >> b >> c;
        a -= origin, b -= origin;
        g[a].emplace_back(b,c);
        if(!is_directed) g[b].emplace_back(a,c);
    }
    return g;
}
#line 2 "library/ntt/ntt.hpp"
template<typename mint>
struct NTT{
    static constexpr uint32_t get_pr() {
        uint32_t _mod = mint::get_mod();
        using u64 = uint64_t;
        u64 ds[32] = {};
        int idx = 0;
        u64 m = _mod - 1;
        for(u64 i = 2;i * i <= m; ++i) {
            if(m % i == 0) {
                ds[idx++] = i;
                while(m % i == 0) m /= i;
            }
        }
        if (m != 1) ds[idx++] = m;
        uint32_t _pr = 2;
        while(1) {
            int flg = 1;
            for(int i = 0;i < idx; ++i) {
                u64 a = _pr, b = (_mod - 1) / ds[i],r = 1;
                while(b) {
                    if(b & 1) r = r * a % _mod;
                    a = a * a % _mod;
                    b >>= 1;
                }
                if(r == 1) {
                    flg = 0;
                    break;
                }
            }
            if (flg == 1) break;
            ++_pr;
        }
        return _pr;
    };
    static constexpr uint32_t mod = mint::get_mod();
    static constexpr uint32_t pr = get_pr();
    static constexpr int level = __builtin_ctzll(mod - 1);
    mint dw[level], dy[level];
    void setwy(int k) {
        mint w[level],y[level];
        w[k - 1] = mint(pr).pow((mod - 1) / (1 << k));
        y[k - 1] = w[k - 1].inverse();
        for(int i = k - 2;i > 0; --i) w[i] = w[i+1] * w[i+1],y[i] = y[i+1] * y[i+1];
        dw[1] = w[1], dy[1] = y[1], dw[2] = w[2], dy[2] = y[2];
        for(int i = 3;i < k;++i) {
            dw[i] = dw[i-1] * y[i-2] * w[i];
            dy[i] = dy[i-1] * w[i-2] * y[i];
        }
    }
    NTT() {setwy(level);}
    void fft4(vector<mint> &a,int k) {
        if((int)a.size() <= 1) return;
        if(k == 1) {
            mint a1 = a[1];
            a[1] = a[0] - a[1];
            a[0] = a[0] + a1;
            return;
        }
        if (k & 1) {
            int v = 1 << (k - 1);
            for(int j = 0;j < v; ++j) {
                mint ajv = a[j + v];
                a[j + v] = a[j] - ajv;
                a[j] += ajv;
            }
        }
        int u = 1 << (2 + (k & 1));
        int v = 1 << (k - 2 - (k & 1));
        mint one = mint(1);
        mint imag = dw[1];
        while(v) {
            {
                int j0 = 0,j1 = v;
                int j2 = j1 + v;
                int j3 = j2 + v;
                for(;j0 < v; ++j0,++j1,++j2,++j3) {
                    mint t0 = a[j0], t1 = a[j1],t2 = a[j2],t3 = a[j3];
                    mint t0p2 = t0 + t2,t1p3 = t1 + t3;
                    mint t0m2 = t0 - t2,t1m3 = (t1 - t3) * imag;
                    a[j0] = t0p2 + t1p3, a[j1] = t0p2 - t1p3;
                    a[j2] = t0m2 + t1m3, a[j3] = t0m2 - t1m3;
                }
            }
            mint ww = one,xx = one * dw[2],wx = one;
            for(int jh = 4;jh < u;) {
                ww = xx * xx,wx = ww * xx;
                int j0 = jh * v;
                int je = j0 + v;
                int j2 = je + v;
                for(;j0 < je;++j0,++j2) {
                    mint t0 = a[j0], t1 = a[j0 + v] * xx, t2 = a[j2] * ww,t3 = a[j2 + v] * wx;
                    mint t0p2 = t0 + t2,t1p3 = t1 + t3;
                    mint t0m2 = t0 - t2,t1m3 = (t1 - t3) * imag;
                    a[j0] = t0p2 + t1p3, a[j0 + v] = t0p2 - t1p3;
                    a[j2] = t0m2 + t1m3, a[j2 + v] = t0m2 - t1m3;
                }
                xx *= dw[__builtin_ctzll((jh += 4))];
            }
            u <<= 2;
            v >>= 2;
        }
    }
    void ifft4(vector<mint> &a,int k) {
        if((int)a.size() <= 1) return;
        if(k == 1) {
            mint a1 = a[1];
            a[1] = a[0] - a[1];
            a[0] = a[0] + a1;
            return;
        }
        int u = 1 << (k - 2);
        int v = 1;
        mint one = mint(1);
        mint imag = dy[1];
        while(u) {
            {
                int j0 = 0,j1 = v;
                int j2 = j1 + v;
                int j3 = j2 + v;
                for(;j0 < v;++j0,++j1,++j2,++j3) {
                    mint t0 = a[j0],t1 = a[j1],t2 = a[j2],t3 = a[j3];
                    mint t0p1 = t0 + t1, t2p3 = t2 + t3;
                    mint t0m1 = t0 - t1, t2m3 = (t2 - t3) * imag;
                    a[j0] = t0p1 + t2p3, a[j2] = t0p1 - t2p3;
                    a[j1] = t0m1 + t2m3, a[j3] = t0m1 - t2m3;
                }
            }
            mint ww = one,xx = one * dy[2],yy = one;
            u <<= 2;
            for(int jh = 4;jh < u;) {
                ww = xx * xx,yy = xx * imag;
                int j0 = jh * v;
                int je = j0 + v;
                int j2 = je + v;
                for(;j0 < je;++j0,++j2) {
                    mint t0 = a[j0], t1 = a[j0 + v], t2 = a[j2], t3 = a[j2 + v];
                    mint t0p1 = t0 + t1, t2p3 = t2 + t3;
                    mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy;
                    a[j0] = t0p1 + t2p3, a[j2] = (t0p1 - t2p3) * ww;
                    a[j0 + v] = t0m1 + t2m3, a[j2 + v] = (t0m1 - t2m3) * ww;       
                }
                xx *= dy[__builtin_ctzll(jh += 4)];
            }
            u >>= 4;
            v <<= 2;
        }
        if(k & 1) {
            u = 1 << (k - 1);
            for(int j = 0;j < u;++j) {
                mint ajv = a[j] - a[j+u];
                a[j] += a[j+u];
                a[j+u] = ajv;
            }
        }
    }
    void ntt(vector<mint> &a) {
        if((int)a.size() <= 1) return;
        fft4(a,__builtin_ctz(a.size()));
    }
    void intt(vector<mint> &a) {
        if((int)a.size() <= 1) return;
        ifft4(a,__builtin_ctz(a.size()));
        mint iv = mint(a.size()).inverse();
        for(auto &x:a) x *= iv;
    }
    vector<mint> multiply(const vector<mint> &a,const vector<mint> &b) {
        int l = a.size() + b.size() - 1;
        if(min<int>(a.size(),b.size()) <= 40) {
            vector<mint> s(l);
            for(int i = 0;i < (int)a.size();++i) for(int j = 0;j < (int)b.size();++j) s[i+j] += a[i] * b[j];
            return s;
        }
        int k = 2, M = 4;
        while(M < l) M <<= 1, ++k;
        //setwy(k);
        vector<mint> s(M), t(M);
        for(int i = 0;i < (int)a.size();++i) s[i] = a[i];
        for(int i = 0;i < (int)b.size();++i) t[i] = b[i];
        fft4(s,k);
        fft4(t,k);
        for(int i = 0;i < M;++i) s[i] *= t[i];
        ifft4(s,k);
        s.resize(l);
        mint invm = mint(M).inverse();
        for(int i = 0;i < l;++i) s[i] *= invm;
        return s;
    }
    void ntt_doubling(vector<mint> &a) {
        int M = (int)a.size();
        auto b = a;
        intt(b);
        mint r = 1, zeta = mint(pr).pow((mint::get_mod() - 1) / (M << 1));
        for(int i = 0;i < M;++i) b[i] *= r,r *= zeta;
        ntt(b);
        copy(begin(b),end(b),back_inserter(a));
    }
};
#line 2 "library/fps/formal-power-series.hpp"
template <typename mint>
struct FormalPowerSeries : vector<mint> {
    using vector<mint>::vector;
    using FPS = FormalPowerSeries;
    FPS &operator+=(const FPS &r) {
        if (r.size() > this->size()) this->resize(r.size());
        for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i];
        return *this;
    }
    FPS &operator+=(const mint &r) {
        if (this->empty()) this->resize(1);
        (*this)[0] += r;
        return *this;
    }
    FPS &operator-=(const FPS &r) {
        if (r.size() > this->size()) this->resize(r.size());
        for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i];
        return *this;
    }
    FPS &operator-=(const mint &r) {
        if (this->empty()) this->resize(1);
        (*this)[0] -= r;
        return *this;
    }
    FPS &operator*=(const mint &v) {
        for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v;
        return *this;
    }
    FPS &operator/=(const FPS &r) {
        if (this->size() < r.size()) {
            this->clear();
            return *this;
        }
        int n = this->size() - r.size() + 1;
        if ((int)r.size() <= 64) {
            FPS f(*this), g(r);
            g.shrink();
            mint coeff = g.back().inverse();
            for (auto &x : g) x *= coeff;
            int deg = (int)f.size() - (int)g.size() + 1;
            int gs = g.size();
            FPS quo(deg);
            for (int i = deg - 1; i >= 0; i--) {
                quo[i] = f[i + gs - 1];
                for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j];
            }
            *this = quo * coeff;
            this->resize(n, mint(0));
            return *this;
        }
        return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev();
    }
    FPS &operator%=(const FPS &r) {
        *this -= *this / r * r;
        shrink();
        return *this;
    }
    FPS operator+(const FPS &r) const { return FPS(*this) += r; }
    FPS operator+(const mint &v) const { return FPS(*this) += v; }
    FPS operator-(const FPS &r) const { return FPS(*this) -= r; }
    FPS operator-(const mint &v) const { return FPS(*this) -= v; }
    FPS operator*(const FPS &r) const { return FPS(*this) *= r; }
    FPS operator*(const mint &v) const { return FPS(*this) *= v; }
    FPS operator/(const FPS &r) const { return FPS(*this) /= r; }
    FPS operator%(const FPS &r) const { return FPS(*this) %= r; }
    FPS operator-() const {
        FPS ret(this->size());
        for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i];
        return ret;
    }
    void shrink() {
        while (this->size() && this->back() == mint(0)) this->pop_back();
    }
    FPS rev() const {
        FPS ret(*this);
        reverse(begin(ret), end(ret));
        return ret;
    }
    FPS dot(FPS &r) const {
        FPS ret(min(this->size(), r.size()));
        for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i];
        return ret;
    }
    FPS pre(int sz) const {
        return FPS(begin(*this), begin(*this) + min((int)this->size(), sz));
    }
    FPS operator>>(int sz) const {
        if ((int)this->size() <= sz) return {};
        FPS ret(*this);
        ret.erase(ret.begin(), ret.begin() + sz);
        return ret;
    }
    FPS operator<<(int sz) const {
        FPS ret(*this);
        ret.insert(ret.begin(), sz, mint(0));
        return ret;
    }
    FPS diff() const {
        const int n = (int)this->size();
        FPS ret(max(0, n - 1));
        mint one(1), coeff(1);
        for (int i = 1; i < n; i++) {
        ret[i - 1] = (*this)[i] * coeff;
        coeff += one;
        }
        return ret;
    }
    FPS integral() const {
        const int n = (int)this->size();
        FPS ret(n + 1);
        ret[0] = mint(0);
        if (n > 0) ret[1] = mint(1);
        auto mod = mint::get_mod();
        for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i);
        for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i];
        return ret;
    }
    mint eval(mint x) const {
        mint r = 0, w = 1;
        for (auto &v : *this) r += w * v, w *= x;
        return r;
    }
    FPS log(int deg = -1) const {
        assert((*this)[0] == mint(1));
        if (deg == -1) deg = (int)this->size();
        return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
    }
    FPS pow(int64_t k, int deg = -1) const {
        const int n = (int)this->size();
        if (deg == -1) deg = n;
        if (k == 0) {
            FPS ret(deg);
            if (deg) ret[0] = 1;
            return ret;
        }
        for (int i = 0; i < n; i++) {
            if ((*this)[i] != mint(0)) {
                mint rev = mint(1) / (*this)[i];
                FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg);
                ret *= (*this)[i].pow(k);
                ret = (ret << (i * k)).pre(deg);
                if ((int)ret.size() < deg) ret.resize(deg, mint(0));
                return ret;
            }
            if (__int128_t(i + 1) * k >= deg) return FPS(deg, mint(0));
        }
        return FPS(deg, mint(0));
    }
    static void *ntt_ptr;
    static void set_fft();
    FPS &operator*=(const FPS &r);
    void ntt();
    void intt();
    void ntt_doubling();
    static int ntt_pr();
    FPS inv(int deg = -1) const;
    FPS exp(int deg = -1) const;
};
template <typename mint>
void *FormalPowerSeries<mint>::ntt_ptr = nullptr;
#line 4 "library/fps/ntt-friendly-fps.hpp"
template <typename mint>
void FormalPowerSeries<mint>::set_fft() {
  if (!ntt_ptr) ntt_ptr = new NTT<mint>;
}
template <typename mint>
FormalPowerSeries<mint>& FormalPowerSeries<mint>::operator*=(const FormalPowerSeries<mint>& r) {
    if (this->empty() || r.empty()) {
        this->clear();
        return *this;
    }
    set_fft();
    auto ret = static_cast<NTT<mint>*>(ntt_ptr)->multiply(*this, r);
    return *this = FormalPowerSeries<mint>(ret.begin(), ret.end());
}
template <typename mint>
void FormalPowerSeries<mint>::ntt() {
    set_fft();
    static_cast<NTT<mint>*>(ntt_ptr)->ntt(*this);
}
template <typename mint>
void FormalPowerSeries<mint>::intt() {
    set_fft();
    static_cast<NTT<mint>*>(ntt_ptr)->intt(*this);
}
template <typename mint>
void FormalPowerSeries<mint>::ntt_doubling() {
    set_fft();
    static_cast<NTT<mint>*>(ntt_ptr)->ntt_doubling(*this);
}
template <typename mint>
int FormalPowerSeries<mint>::ntt_pr() {
    set_fft();
    return static_cast<NTT<mint>*>(ntt_ptr)->pr;
}
template <typename mint>
FormalPowerSeries<mint> FormalPowerSeries<mint>::inv(int deg) const {
    assert((*this)[0] != mint(0));
    if (deg == -1) deg = (int)this->size();
    FormalPowerSeries<mint> res(deg);
    res[0] = {mint(1) / (*this)[0]};
    for (int d = 1; d < deg; d <<= 1) {
        FormalPowerSeries<mint> f(2 * d), g(2 * d);
        for (int j = 0; j < min((int)this->size(), 2 * d); j++) f[j] = (*this)[j];
        for (int j = 0; j < d; j++) g[j] = res[j];
        f.ntt();
        g.ntt();
        for (int j = 0; j < 2 * d; j++) f[j] *= g[j];
        f.intt();
        for (int j = 0; j < d; j++) f[j] = 0;
        f.ntt();
        for (int j = 0; j < 2 * d; j++) f[j] *= g[j];
        f.intt();
        for (int j = d; j < min(2 * d, deg); j++) res[j] = -f[j];
    }
    return res.pre(deg);
}
template <typename mint>
FormalPowerSeries<mint> FormalPowerSeries<mint>::exp(int deg) const {
    using fps = FormalPowerSeries<mint>;
    assert((*this).size() == 0 || (*this)[0] == mint(0));
    if (deg == -1) deg = this->size();
    fps inv;
    inv.reserve(deg + 1);
    inv.push_back(mint(0));
    inv.push_back(mint(1));
    auto inplace_integral = [&](fps& F) -> void {
        const int n = (int)F.size();
        auto mod = mint::get_mod();
        while ((int)inv.size() <= n) {
            int i = inv.size();
            inv.push_back((-inv[mod % i]) * (mod / i));
        }
        F.insert(begin(F), mint(0));
        for (int i = 1; i <= n; i++) F[i] *= inv[i];
    };
    auto inplace_diff = [](fps& F) -> void {
        if (F.empty()) return;
        F.erase(begin(F));
        mint coeff = 1, one = 1;
        for (int i = 0; i < (int)F.size(); i++) {
            F[i] *= coeff;
            coeff += one;
        }
    };
    fps b{1, 1 < (int)this->size() ? (*this)[1] : 0}, c{1}, z1, z2{1, 1};
    for (int m = 2; m < deg; m *= 2) {
        auto y = b;
        y.resize(2 * m);
        y.ntt();
        z1 = z2;
        fps z(m);
        for (int i = 0; i < m; ++i) z[i] = y[i] * z1[i];
        z.intt();
        fill(begin(z), begin(z) + m / 2, mint(0));
        z.ntt();
        for (int i = 0; i < m; ++i) z[i] *= -z1[i];
        z.intt();
        c.insert(end(c), begin(z) + m / 2, end(z));
        z2 = c;
        z2.resize(2 * m);
        z2.ntt();
        fps x(begin(*this), begin(*this) + min<int>(this->size(), m));
        x.resize(m);
        inplace_diff(x);
        x.push_back(mint(0));
        x.ntt();
        for (int i = 0; i < m; ++i) x[i] *= y[i];
        x.intt();
        x -= b.diff();
        x.resize(2 * m);
        for (int i = 0; i < m - 1; ++i) x[m + i] = x[i], x[i] = mint(0);
        x.ntt();
        for (int i = 0; i < 2 * m; ++i) x[i] *= z2[i];
        x.intt();
        x.pop_back();
        inplace_integral(x);
        for (int i = m; i < min<int>(this->size(), 2 * m); ++i) x[i] += (*this)[i];
        fill(begin(x), begin(x) + m, mint(0));
        x.ntt();
        for (int i = 0; i < 2 * m; ++i) x[i] *= y[i];
        x.intt();
        b.insert(end(b), begin(x) + m, end(x));
    }
    return fps{begin(b), begin(b) + deg};
}
#line 93 "main.cpp"
template <typename mint>
mint LinearRecurrence(long long k, FormalPowerSeries<mint> Q,
                      FormalPowerSeries<mint> P) {
  Q.shrink();
  mint ret = 0;
  if (P.size() >= Q.size()) {
    auto R = P / Q;
    P -= R * Q;
    P.shrink();
    if (k < (int)R.size()) ret += R[k];
  }
  if ((int)P.size() == 0) return ret;

  FormalPowerSeries<mint>::set_fft();
  if (FormalPowerSeries<mint>::ntt_ptr == nullptr) {
    P.resize((int)Q.size() - 1);
    while (k) {
      auto Q2 = Q;
      for (int i = 1; i < (int)Q2.size(); i += 2) Q2[i] = -Q2[i];
      auto S = P * Q2;
      auto T = Q * Q2;
      if (k & 1) {
        for (int i = 1; i < (int)S.size(); i += 2) P[i >> 1] = S[i];
        for (int i = 0; i < (int)T.size(); i += 2) Q[i >> 1] = T[i];
      } else {
        for (int i = 0; i < (int)S.size(); i += 2) P[i >> 1] = S[i];
        for (int i = 0; i < (int)T.size(); i += 2) Q[i >> 1] = T[i];
      }
      k >>= 1;
    }
    return ret + P[0];
  } else {
    int N = 1;
    while (N < (int)Q.size()) N <<= 1;

    P.resize(2 * N);
    Q.resize(2 * N);
    P.ntt();
    Q.ntt();
    vector<mint> S(2 * N), T(2 * N);

    vector<int> btr(N);
    for (int i = 0, logn = __builtin_ctz(N); i < (1 << logn); i++) {
      btr[i] = (btr[i >> 1] >> 1) + ((i & 1) << (logn - 1));
    }
    mint dw = mint(FormalPowerSeries<mint>::ntt_pr())
                  .inverse()
                  .pow((mint::get_mod() - 1) / (2 * N));

    while (k) {
      mint inv2 = mint(2).inverse();

      // even degree of Q(x)Q(-x)
      T.resize(N);
      for (int i = 0; i < N; i++) T[i] = Q[(i << 1) | 0] * Q[(i << 1) | 1];

      S.resize(N);
      if (k & 1) {
        // odd degree of P(x)Q(-x)
        for (auto &i : btr) {
          S[i] = (P[(i << 1) | 0] * Q[(i << 1) | 1] -
                  P[(i << 1) | 1] * Q[(i << 1) | 0]) *
                 inv2;
          inv2 *= dw;
        }
      } else {
        // even degree of P(x)Q(-x)
        for (int i = 0; i < N; i++) {
          S[i] = (P[(i << 1) | 0] * Q[(i << 1) | 1] +
                  P[(i << 1) | 1] * Q[(i << 1) | 0]) *
                 inv2;
        }
      }
      swap(P, S);
      swap(Q, T);
      k >>= 1;
      if (k < N) break;
      P.ntt_doubling();
      Q.ntt_doubling();
    }
    P.intt();
    Q.intt();
    return ret + (P * (Q.inv()))[k];
  }
}

template <typename mint>
mint kitamasa(long long N, FormalPowerSeries<mint> Q,
              FormalPowerSeries<mint> a) {
  assert(!Q.empty() && Q[0] != 0);
  if (N < (int)a.size()) return a[N];
  assert((int)a.size() >= int(Q.size()) - 1);
  auto P = a.pre((int)Q.size() - 1) * Q;
  P.resize(Q.size() - 1);
  return LinearRecurrence<mint>(N, Q, P);
}
template <typename mint>
vector<mint> BerlekampMassey(const vector<mint> &s) {
  const int N = (int)s.size();
  vector<mint> b, c;
  b.reserve(N + 1);
  c.reserve(N + 1);
  b.push_back(mint(1));
  c.push_back(mint(1));
  mint y = mint(1);
  for (int ed = 1; ed <= N; ed++) {
    int l = int(c.size()), m = int(b.size());
    mint x = 0;
    for (int i = 0; i < l; i++) x += c[i] * s[ed - l + i];
    b.emplace_back(mint(0));
    m++;
    if (x == mint(0)) continue;
    mint freq = x / y;
    if (l < m) {
      auto tmp = c;
      c.insert(begin(c), m - l, mint(0));
      for (int i = 0; i < m; i++) c[m - 1 - i] -= freq * b[m - 1 - i];
      b = tmp;
      y = x;
    } else {
      for (int i = 0; i < m; i++) c[l - 1 - i] -= freq * b[m - 1 - i];
    }
  }
  reverse(begin(c), end(c));
  return c;
}
using FPS = FormalPowerSeries<mint>;
int main() {
    INT(n);
    VEC(int,p,n);
    VEC(int,w,n);
    Wgraph<int> g(n+1);
    rep(i,n) {
        g[p[i]].emplace_back(i+1,w[i]);
    }
    vm prob(n+1);
    prob[0] = 1;
    vi dep(n+1);
    auto dfs = REC([&](auto &&f,int now) -> void {
        ll sw = 0;
        for(auto &nex:g[now]) {
            sw += nex.cost;
            dep[nex] = dep[now] + 1;
        }
        mint invsw = mint(sw).inverse();
        for(auto &nex:g[now]) {
            prob[nex] = prob[now] * nex.cost * invsw;
            f(nex);
        }
    });
    dfs(0);
    int MA = max(dep);
    int K = MA + 1;
    FPS Q(K + 1);
    Q[0] = 1;
    rep(i,1,n+1) {
        if(g[i].empty()) Q[dep[i] + 1] -= prob[i];
    }
    vm A(K + 10);
    vm S(K + 10);
    A[0] = 1;
    S[0] = 1;
    rep(i,1,K+10) {
        rep(j,1,min((int)i+1,K+1)) {
            A[i] += -Q[j] * A[i-j];
        }
        S[i] = S[i-1] + A[i];
    }
    debug(A,S,Q);
    mint SU = 0;
    rep(i,Q.size()) SU += Q[i];
    debug(SU);
    vm bm = BerlekampMassey<mint>(S);
    FPS BM = FPS{all(bm)};
    debug(BM);
    INT(q);
    rep(i,q) {
        INT(a,k);
        if(k < dep[a]) {
            cout << 0 << '\n';
            continue;
        }
        mint X = kitamasa(k-dep[a],BM,FPS{all(S)});
        //debug(X);
        if(a == 0) cout << X - 1 << '\n';
        else cout << X * prob[a] << '\n';
    }
}
0