結果
問題 | No.2305 [Cherry 5th Tune N] Until That Day... |
ユーザー | siganai |
提出日時 | 2023-05-20 19:25:22 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 601 ms / 10,000 ms |
コード長 | 28,914 bytes |
コンパイル時間 | 3,935 ms |
コンパイル使用メモリ | 245,956 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-06-01 07:26:25 |
合計ジャッジ時間 | 6,634 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 3 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,944 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 3 ms
6,944 KB |
testcase_06 | AC | 3 ms
6,940 KB |
testcase_07 | AC | 6 ms
6,940 KB |
testcase_08 | AC | 5 ms
6,944 KB |
testcase_09 | AC | 5 ms
6,940 KB |
testcase_10 | AC | 5 ms
6,944 KB |
testcase_11 | AC | 601 ms
6,944 KB |
testcase_12 | AC | 591 ms
6,940 KB |
testcase_13 | AC | 51 ms
6,944 KB |
testcase_14 | AC | 52 ms
6,940 KB |
testcase_15 | AC | 3 ms
6,940 KB |
testcase_16 | AC | 4 ms
6,940 KB |
testcase_17 | AC | 2 ms
6,940 KB |
testcase_18 | AC | 601 ms
6,940 KB |
testcase_19 | AC | 4 ms
6,940 KB |
testcase_20 | AC | 226 ms
6,940 KB |
ソースコード
#line 1 "main.cpp" //#pragma GCC target("avx") //#pragma GCC optimize("O3") //#pragma GCC optimize("unroll-loops") #include<bits/stdc++.h> #ifdef LOCAL #include <debug.hpp> #define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__) #else #define debug(...) (static_cast<void>(0)) #endif using namespace std; using ll = long long; using ld = long double; using pll = pair<ll, ll>; using pii = pair<int, int>; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vpii = vector<pii>; using vpll = vector<pll>; using vs = vector<string>; template<class T> using pq = priority_queue<T, vector<T>, greater<T>>; #define overload4(_1, _2, _3, _4, name, ...) name #define overload3(a,b,c,name,...) name #define rep1(n) for (ll UNUSED_NUMBER = 0; UNUSED_NUMBER < (n); ++UNUSED_NUMBER) #define rep2(i, n) for (ll i = 0; i < (n); ++i) #define rep3(i, a, b) for (ll i = (a); i < (b); ++i) #define rep4(i, a, b, c) for (ll i = (a); i < (b); i += (c)) #define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__) #define rrep1(n) for(ll i = (n) - 1;i >= 0;i--) #define rrep2(i,n) for(ll i = (n) - 1;i >= 0;i--) #define rrep3(i,a,b) for(ll i = (b) - 1;i >= (a);i--) #define rrep4(i,a,b,c) for(ll i = (a) + ((b)-(a)-1) / (c) * (c);i >= (a);i -= c) #define rrep(...) overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__) #define all1(i) begin(i) , end(i) #define all2(i,a) begin(i) , begin(i) + a #define all3(i,a,b) begin(i) + a , begin(i) + b #define all(...) overload3(__VA_ARGS__, all3, all2, all1)(__VA_ARGS__) #define sum(...) accumulate(all(__VA_ARGS__),0LL) template<class T> bool chmin(T &a, const T &b){ if(a > b){ a = b; return 1; } else return 0; } template<class T> bool chmax(T &a, const T &b){ if(a < b){ a = b; return 1; } else return 0; } template<class T> auto min(const T& a){ return *min_element(all(a)); } template<class T> auto max(const T& a){ return *max_element(all(a)); } template<class... Ts> void in(Ts&... t); #define INT(...) int __VA_ARGS__; in(__VA_ARGS__) #define LL(...) ll __VA_ARGS__; in(__VA_ARGS__) #define STR(...) string __VA_ARGS__; in(__VA_ARGS__) #define CHR(...) char __VA_ARGS__; in(__VA_ARGS__) #define DBL(...) double __VA_ARGS__; in(__VA_ARGS__) #define LD(...) ld __VA_ARGS__; in(__VA_ARGS__) #define VEC(type, name, size) vector<type> name(size); in(name) #define VV(type, name, h, w) vector<vector<type>> name(h, vector<type>(w)); in(name) ll intpow(ll a, ll b){ ll ans = 1; while(b){if(b & 1) ans *= a; a *= a; b /= 2;} return ans;} ll modpow(ll a, ll b, ll p){ ll ans = 1; a %= p;if(a < 0) a += p;while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; } ll GCD(ll a,ll b) { if(a == 0 || b == 0) return 0; if(a % b == 0) return b; else return GCD(b,a%b);} ll LCM(ll a,ll b) { if(a == 0) return b; if(b == 0) return a;return a / GCD(a,b) * b;} namespace IO{ #define VOID(a) decltype(void(a)) struct setting{ setting(){cin.tie(nullptr); ios::sync_with_stdio(false);fixed(cout); cout.precision(12);}} setting; template<int I> struct P : P<I-1>{}; template<> struct P<0>{}; template<class T> void i(T& t){ i(t, P<3>{}); } void i(vector<bool>::reference t, P<3>){ int a; i(a); t = a; } template<class T> auto i(T& t, P<2>) -> VOID(cin >> t){ cin >> t; } template<class T> auto i(T& t, P<1>) -> VOID(begin(t)){ for(auto&& x : t) i(x); } template<class T, size_t... idx> void ituple(T& t, index_sequence<idx...>){ in(get<idx>(t)...);} template<class T> auto i(T& t, P<0>) -> VOID(tuple_size<T>{}){ ituple(t, make_index_sequence<tuple_size<T>::value>{});} #undef VOID } #define unpack(a) (void)initializer_list<int>{(a, 0)...} template<class... Ts> void in(Ts&... t){ unpack(IO :: i(t)); } #undef unpack static const double PI = 3.1415926535897932; template <class F> struct REC { F f; REC(F &&f_) : f(forward<F>(f_)) {} template <class... Args> auto operator()(Args &&...args) const { return f(*this, forward<Args>(args)...); }}; //constexpr int mod = 1000000007; constexpr int mod = 998244353; #line 2 "library/modint/Modint.hpp" template <int mod> struct Modint{ int x; Modint():x(0) {} Modint(long long y): x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} Modint &operator += (const Modint &p) { if((x += p.x) >= mod) x -= mod; return *this;} Modint &operator -= (const Modint &p) { if ((x += mod - p.x) >= mod) x -= mod; return *this;} Modint &operator *= (const Modint &p) { x = (int)(1LL * x * p.x % mod); return *this;} Modint &operator /= (const Modint &p) { *this *= p.inverse(); return *this;} Modint operator -() const{return Modint(-x);} Modint operator +(const Modint &p) const {return Modint(*this) += p;} Modint operator -(const Modint &p) const {return Modint(*this) -= p;} Modint operator *(const Modint &p) const {return Modint(*this) *= p;} Modint operator /(const Modint &p) const {return Modint(*this) /= p;} Modint &operator ++() {if(x == mod - 1) x = 0; else x++; return *this;} Modint &operator --() {if(x == 0) x = mod - 1; else x--; return *this;} bool operator == (const Modint &p) const {return x == p.x;} bool operator != (const Modint &p) const {return x != p.x;} Modint inverse() const { int a = x, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return Modint(u);} Modint pow(long long n) const { Modint ret(1), mul(x); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret;} friend ostream &operator<<(ostream &os, const Modint &p) { return os << p.x; } friend istream &operator>>(istream &is, Modint &a) { long long t; is >> t; a = Modint<mod>(t); return (is); } static constexpr int get_mod() {return mod;} }; #line 87 "main.cpp" using mint = Modint<mod>; using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; #line 2 "library/graph/graph-template.hpp" template <typename T> struct Edge { int from, to; T cost; Edge() = default; Edge(int _to, T _cost) : from(-1), to(_to), cost(_cost) {} Edge(int _from, int _to, T _cost) : from(_from), to(_to), cost(_cost) {} bool operator < (const Edge &a) const { return cost < a.cost; } bool operator > (const Edge &a) const { return cost > a.cost; } Edge &operator = (const int &x) { to = x; return *this; } operator int() const { return to; } friend ostream operator<<(ostream &os, Edge &edge) { return os << edge.to; } }; template <typename T> using Edges = vector<Edge<T>>; template <typename T> using Wgraph = vector<Edges<T>>; using Ugraph = vector<vector<int>>; Ugraph uinput(int N, int M = -1, bool is_directed = false, int origin = 1) { Ugraph g(N); if (M == -1) M = N - 1; while(M--) { int a,b; cin >> a >> b; a -= origin, b -= origin; g[a].push_back(b); if(!is_directed) g[b].push_back(a); } return g; } template <typename T> Wgraph<T> winput(int N, int M = -1, bool is_directed = false,int origin = 1) { Wgraph<T> g(N); if (M == -1) M = N - 1; while(M--) { int a,b; T c; cin >> a >> b >> c; a -= origin, b -= origin; g[a].emplace_back(b,c); if(!is_directed) g[b].emplace_back(a,c); } return g; } #line 2 "library/ntt/ntt.hpp" template<typename mint> struct NTT{ static constexpr uint32_t get_pr() { uint32_t _mod = mint::get_mod(); using u64 = uint64_t; u64 ds[32] = {}; int idx = 0; u64 m = _mod - 1; for(u64 i = 2;i * i <= m; ++i) { if(m % i == 0) { ds[idx++] = i; while(m % i == 0) m /= i; } } if (m != 1) ds[idx++] = m; uint32_t _pr = 2; while(1) { int flg = 1; for(int i = 0;i < idx; ++i) { u64 a = _pr, b = (_mod - 1) / ds[i],r = 1; while(b) { if(b & 1) r = r * a % _mod; a = a * a % _mod; b >>= 1; } if(r == 1) { flg = 0; break; } } if (flg == 1) break; ++_pr; } return _pr; }; static constexpr uint32_t mod = mint::get_mod(); static constexpr uint32_t pr = get_pr(); static constexpr int level = __builtin_ctzll(mod - 1); mint dw[level], dy[level]; void setwy(int k) { mint w[level],y[level]; w[k - 1] = mint(pr).pow((mod - 1) / (1 << k)); y[k - 1] = w[k - 1].inverse(); for(int i = k - 2;i > 0; --i) w[i] = w[i+1] * w[i+1],y[i] = y[i+1] * y[i+1]; dw[1] = w[1], dy[1] = y[1], dw[2] = w[2], dy[2] = y[2]; for(int i = 3;i < k;++i) { dw[i] = dw[i-1] * y[i-2] * w[i]; dy[i] = dy[i-1] * w[i-2] * y[i]; } } NTT() {setwy(level);} void fft4(vector<mint> &a,int k) { if((int)a.size() <= 1) return; if(k == 1) { mint a1 = a[1]; a[1] = a[0] - a[1]; a[0] = a[0] + a1; return; } if (k & 1) { int v = 1 << (k - 1); for(int j = 0;j < v; ++j) { mint ajv = a[j + v]; a[j + v] = a[j] - ajv; a[j] += ajv; } } int u = 1 << (2 + (k & 1)); int v = 1 << (k - 2 - (k & 1)); mint one = mint(1); mint imag = dw[1]; while(v) { { int j0 = 0,j1 = v; int j2 = j1 + v; int j3 = j2 + v; for(;j0 < v; ++j0,++j1,++j2,++j3) { mint t0 = a[j0], t1 = a[j1],t2 = a[j2],t3 = a[j3]; mint t0p2 = t0 + t2,t1p3 = t1 + t3; mint t0m2 = t0 - t2,t1m3 = (t1 - t3) * imag; a[j0] = t0p2 + t1p3, a[j1] = t0p2 - t1p3; a[j2] = t0m2 + t1m3, a[j3] = t0m2 - t1m3; } } mint ww = one,xx = one * dw[2],wx = one; for(int jh = 4;jh < u;) { ww = xx * xx,wx = ww * xx; int j0 = jh * v; int je = j0 + v; int j2 = je + v; for(;j0 < je;++j0,++j2) { mint t0 = a[j0], t1 = a[j0 + v] * xx, t2 = a[j2] * ww,t3 = a[j2 + v] * wx; mint t0p2 = t0 + t2,t1p3 = t1 + t3; mint t0m2 = t0 - t2,t1m3 = (t1 - t3) * imag; a[j0] = t0p2 + t1p3, a[j0 + v] = t0p2 - t1p3; a[j2] = t0m2 + t1m3, a[j2 + v] = t0m2 - t1m3; } xx *= dw[__builtin_ctzll((jh += 4))]; } u <<= 2; v >>= 2; } } void ifft4(vector<mint> &a,int k) { if((int)a.size() <= 1) return; if(k == 1) { mint a1 = a[1]; a[1] = a[0] - a[1]; a[0] = a[0] + a1; return; } int u = 1 << (k - 2); int v = 1; mint one = mint(1); mint imag = dy[1]; while(u) { { int j0 = 0,j1 = v; int j2 = j1 + v; int j3 = j2 + v; for(;j0 < v;++j0,++j1,++j2,++j3) { mint t0 = a[j0],t1 = a[j1],t2 = a[j2],t3 = a[j3]; mint t0p1 = t0 + t1, t2p3 = t2 + t3; mint t0m1 = t0 - t1, t2m3 = (t2 - t3) * imag; a[j0] = t0p1 + t2p3, a[j2] = t0p1 - t2p3; a[j1] = t0m1 + t2m3, a[j3] = t0m1 - t2m3; } } mint ww = one,xx = one * dy[2],yy = one; u <<= 2; for(int jh = 4;jh < u;) { ww = xx * xx,yy = xx * imag; int j0 = jh * v; int je = j0 + v; int j2 = je + v; for(;j0 < je;++j0,++j2) { mint t0 = a[j0], t1 = a[j0 + v], t2 = a[j2], t3 = a[j2 + v]; mint t0p1 = t0 + t1, t2p3 = t2 + t3; mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy; a[j0] = t0p1 + t2p3, a[j2] = (t0p1 - t2p3) * ww; a[j0 + v] = t0m1 + t2m3, a[j2 + v] = (t0m1 - t2m3) * ww; } xx *= dy[__builtin_ctzll(jh += 4)]; } u >>= 4; v <<= 2; } if(k & 1) { u = 1 << (k - 1); for(int j = 0;j < u;++j) { mint ajv = a[j] - a[j+u]; a[j] += a[j+u]; a[j+u] = ajv; } } } void ntt(vector<mint> &a) { if((int)a.size() <= 1) return; fft4(a,__builtin_ctz(a.size())); } void intt(vector<mint> &a) { if((int)a.size() <= 1) return; ifft4(a,__builtin_ctz(a.size())); mint iv = mint(a.size()).inverse(); for(auto &x:a) x *= iv; } vector<mint> multiply(const vector<mint> &a,const vector<mint> &b) { int l = a.size() + b.size() - 1; if(min<int>(a.size(),b.size()) <= 40) { vector<mint> s(l); for(int i = 0;i < (int)a.size();++i) for(int j = 0;j < (int)b.size();++j) s[i+j] += a[i] * b[j]; return s; } int k = 2, M = 4; while(M < l) M <<= 1, ++k; //setwy(k); vector<mint> s(M), t(M); for(int i = 0;i < (int)a.size();++i) s[i] = a[i]; for(int i = 0;i < (int)b.size();++i) t[i] = b[i]; fft4(s,k); fft4(t,k); for(int i = 0;i < M;++i) s[i] *= t[i]; ifft4(s,k); s.resize(l); mint invm = mint(M).inverse(); for(int i = 0;i < l;++i) s[i] *= invm; return s; } void ntt_doubling(vector<mint> &a) { int M = (int)a.size(); auto b = a; intt(b); mint r = 1, zeta = mint(pr).pow((mint::get_mod() - 1) / (M << 1)); for(int i = 0;i < M;++i) b[i] *= r,r *= zeta; ntt(b); copy(begin(b),end(b),back_inserter(a)); } }; #line 2 "library/fps/formal-power-series.hpp" template <typename mint> struct FormalPowerSeries : vector<mint> { using vector<mint>::vector; using FPS = FormalPowerSeries; FPS &operator+=(const FPS &r) { if (r.size() > this->size()) this->resize(r.size()); for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i]; return *this; } FPS &operator+=(const mint &r) { if (this->empty()) this->resize(1); (*this)[0] += r; return *this; } FPS &operator-=(const FPS &r) { if (r.size() > this->size()) this->resize(r.size()); for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i]; return *this; } FPS &operator-=(const mint &r) { if (this->empty()) this->resize(1); (*this)[0] -= r; return *this; } FPS &operator*=(const mint &v) { for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v; return *this; } FPS &operator/=(const FPS &r) { if (this->size() < r.size()) { this->clear(); return *this; } int n = this->size() - r.size() + 1; if ((int)r.size() <= 64) { FPS f(*this), g(r); g.shrink(); mint coeff = g.back().inverse(); for (auto &x : g) x *= coeff; int deg = (int)f.size() - (int)g.size() + 1; int gs = g.size(); FPS quo(deg); for (int i = deg - 1; i >= 0; i--) { quo[i] = f[i + gs - 1]; for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j]; } *this = quo * coeff; this->resize(n, mint(0)); return *this; } return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev(); } FPS &operator%=(const FPS &r) { *this -= *this / r * r; shrink(); return *this; } FPS operator+(const FPS &r) const { return FPS(*this) += r; } FPS operator+(const mint &v) const { return FPS(*this) += v; } FPS operator-(const FPS &r) const { return FPS(*this) -= r; } FPS operator-(const mint &v) const { return FPS(*this) -= v; } FPS operator*(const FPS &r) const { return FPS(*this) *= r; } FPS operator*(const mint &v) const { return FPS(*this) *= v; } FPS operator/(const FPS &r) const { return FPS(*this) /= r; } FPS operator%(const FPS &r) const { return FPS(*this) %= r; } FPS operator-() const { FPS ret(this->size()); for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i]; return ret; } void shrink() { while (this->size() && this->back() == mint(0)) this->pop_back(); } FPS rev() const { FPS ret(*this); reverse(begin(ret), end(ret)); return ret; } FPS dot(FPS &r) const { FPS ret(min(this->size(), r.size())); for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i]; return ret; } FPS pre(int sz) const { return FPS(begin(*this), begin(*this) + min((int)this->size(), sz)); } FPS operator>>(int sz) const { if ((int)this->size() <= sz) return {}; FPS ret(*this); ret.erase(ret.begin(), ret.begin() + sz); return ret; } FPS operator<<(int sz) const { FPS ret(*this); ret.insert(ret.begin(), sz, mint(0)); return ret; } FPS diff() const { const int n = (int)this->size(); FPS ret(max(0, n - 1)); mint one(1), coeff(1); for (int i = 1; i < n; i++) { ret[i - 1] = (*this)[i] * coeff; coeff += one; } return ret; } FPS integral() const { const int n = (int)this->size(); FPS ret(n + 1); ret[0] = mint(0); if (n > 0) ret[1] = mint(1); auto mod = mint::get_mod(); for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i); for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i]; return ret; } mint eval(mint x) const { mint r = 0, w = 1; for (auto &v : *this) r += w * v, w *= x; return r; } FPS log(int deg = -1) const { assert((*this)[0] == mint(1)); if (deg == -1) deg = (int)this->size(); return (this->diff() * this->inv(deg)).pre(deg - 1).integral(); } FPS pow(int64_t k, int deg = -1) const { const int n = (int)this->size(); if (deg == -1) deg = n; if (k == 0) { FPS ret(deg); if (deg) ret[0] = 1; return ret; } for (int i = 0; i < n; i++) { if ((*this)[i] != mint(0)) { mint rev = mint(1) / (*this)[i]; FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg); ret *= (*this)[i].pow(k); ret = (ret << (i * k)).pre(deg); if ((int)ret.size() < deg) ret.resize(deg, mint(0)); return ret; } if (__int128_t(i + 1) * k >= deg) return FPS(deg, mint(0)); } return FPS(deg, mint(0)); } static void *ntt_ptr; static void set_fft(); FPS &operator*=(const FPS &r); void ntt(); void intt(); void ntt_doubling(); static int ntt_pr(); FPS inv(int deg = -1) const; FPS exp(int deg = -1) const; }; template <typename mint> void *FormalPowerSeries<mint>::ntt_ptr = nullptr; #line 4 "library/fps/ntt-friendly-fps.hpp" template <typename mint> void FormalPowerSeries<mint>::set_fft() { if (!ntt_ptr) ntt_ptr = new NTT<mint>; } template <typename mint> FormalPowerSeries<mint>& FormalPowerSeries<mint>::operator*=(const FormalPowerSeries<mint>& r) { if (this->empty() || r.empty()) { this->clear(); return *this; } set_fft(); auto ret = static_cast<NTT<mint>*>(ntt_ptr)->multiply(*this, r); return *this = FormalPowerSeries<mint>(ret.begin(), ret.end()); } template <typename mint> void FormalPowerSeries<mint>::ntt() { set_fft(); static_cast<NTT<mint>*>(ntt_ptr)->ntt(*this); } template <typename mint> void FormalPowerSeries<mint>::intt() { set_fft(); static_cast<NTT<mint>*>(ntt_ptr)->intt(*this); } template <typename mint> void FormalPowerSeries<mint>::ntt_doubling() { set_fft(); static_cast<NTT<mint>*>(ntt_ptr)->ntt_doubling(*this); } template <typename mint> int FormalPowerSeries<mint>::ntt_pr() { set_fft(); return static_cast<NTT<mint>*>(ntt_ptr)->pr; } template <typename mint> FormalPowerSeries<mint> FormalPowerSeries<mint>::inv(int deg) const { assert((*this)[0] != mint(0)); if (deg == -1) deg = (int)this->size(); FormalPowerSeries<mint> res(deg); res[0] = {mint(1) / (*this)[0]}; for (int d = 1; d < deg; d <<= 1) { FormalPowerSeries<mint> f(2 * d), g(2 * d); for (int j = 0; j < min((int)this->size(), 2 * d); j++) f[j] = (*this)[j]; for (int j = 0; j < d; j++) g[j] = res[j]; f.ntt(); g.ntt(); for (int j = 0; j < 2 * d; j++) f[j] *= g[j]; f.intt(); for (int j = 0; j < d; j++) f[j] = 0; f.ntt(); for (int j = 0; j < 2 * d; j++) f[j] *= g[j]; f.intt(); for (int j = d; j < min(2 * d, deg); j++) res[j] = -f[j]; } return res.pre(deg); } template <typename mint> FormalPowerSeries<mint> FormalPowerSeries<mint>::exp(int deg) const { using fps = FormalPowerSeries<mint>; assert((*this).size() == 0 || (*this)[0] == mint(0)); if (deg == -1) deg = this->size(); fps inv; inv.reserve(deg + 1); inv.push_back(mint(0)); inv.push_back(mint(1)); auto inplace_integral = [&](fps& F) -> void { const int n = (int)F.size(); auto mod = mint::get_mod(); while ((int)inv.size() <= n) { int i = inv.size(); inv.push_back((-inv[mod % i]) * (mod / i)); } F.insert(begin(F), mint(0)); for (int i = 1; i <= n; i++) F[i] *= inv[i]; }; auto inplace_diff = [](fps& F) -> void { if (F.empty()) return; F.erase(begin(F)); mint coeff = 1, one = 1; for (int i = 0; i < (int)F.size(); i++) { F[i] *= coeff; coeff += one; } }; fps b{1, 1 < (int)this->size() ? (*this)[1] : 0}, c{1}, z1, z2{1, 1}; for (int m = 2; m < deg; m *= 2) { auto y = b; y.resize(2 * m); y.ntt(); z1 = z2; fps z(m); for (int i = 0; i < m; ++i) z[i] = y[i] * z1[i]; z.intt(); fill(begin(z), begin(z) + m / 2, mint(0)); z.ntt(); for (int i = 0; i < m; ++i) z[i] *= -z1[i]; z.intt(); c.insert(end(c), begin(z) + m / 2, end(z)); z2 = c; z2.resize(2 * m); z2.ntt(); fps x(begin(*this), begin(*this) + min<int>(this->size(), m)); x.resize(m); inplace_diff(x); x.push_back(mint(0)); x.ntt(); for (int i = 0; i < m; ++i) x[i] *= y[i]; x.intt(); x -= b.diff(); x.resize(2 * m); for (int i = 0; i < m - 1; ++i) x[m + i] = x[i], x[i] = mint(0); x.ntt(); for (int i = 0; i < 2 * m; ++i) x[i] *= z2[i]; x.intt(); x.pop_back(); inplace_integral(x); for (int i = m; i < min<int>(this->size(), 2 * m); ++i) x[i] += (*this)[i]; fill(begin(x), begin(x) + m, mint(0)); x.ntt(); for (int i = 0; i < 2 * m; ++i) x[i] *= y[i]; x.intt(); b.insert(end(b), begin(x) + m, end(x)); } return fps{begin(b), begin(b) + deg}; } #line 93 "main.cpp" template <typename mint> mint LinearRecurrence(long long k, FormalPowerSeries<mint> Q, FormalPowerSeries<mint> P) { Q.shrink(); mint ret = 0; if (P.size() >= Q.size()) { auto R = P / Q; P -= R * Q; P.shrink(); if (k < (int)R.size()) ret += R[k]; } if ((int)P.size() == 0) return ret; FormalPowerSeries<mint>::set_fft(); if (FormalPowerSeries<mint>::ntt_ptr == nullptr) { P.resize((int)Q.size() - 1); while (k) { auto Q2 = Q; for (int i = 1; i < (int)Q2.size(); i += 2) Q2[i] = -Q2[i]; auto S = P * Q2; auto T = Q * Q2; if (k & 1) { for (int i = 1; i < (int)S.size(); i += 2) P[i >> 1] = S[i]; for (int i = 0; i < (int)T.size(); i += 2) Q[i >> 1] = T[i]; } else { for (int i = 0; i < (int)S.size(); i += 2) P[i >> 1] = S[i]; for (int i = 0; i < (int)T.size(); i += 2) Q[i >> 1] = T[i]; } k >>= 1; } return ret + P[0]; } else { int N = 1; while (N < (int)Q.size()) N <<= 1; P.resize(2 * N); Q.resize(2 * N); P.ntt(); Q.ntt(); vector<mint> S(2 * N), T(2 * N); vector<int> btr(N); for (int i = 0, logn = __builtin_ctz(N); i < (1 << logn); i++) { btr[i] = (btr[i >> 1] >> 1) + ((i & 1) << (logn - 1)); } mint dw = mint(FormalPowerSeries<mint>::ntt_pr()) .inverse() .pow((mint::get_mod() - 1) / (2 * N)); while (k) { mint inv2 = mint(2).inverse(); // even degree of Q(x)Q(-x) T.resize(N); for (int i = 0; i < N; i++) T[i] = Q[(i << 1) | 0] * Q[(i << 1) | 1]; S.resize(N); if (k & 1) { // odd degree of P(x)Q(-x) for (auto &i : btr) { S[i] = (P[(i << 1) | 0] * Q[(i << 1) | 1] - P[(i << 1) | 1] * Q[(i << 1) | 0]) * inv2; inv2 *= dw; } } else { // even degree of P(x)Q(-x) for (int i = 0; i < N; i++) { S[i] = (P[(i << 1) | 0] * Q[(i << 1) | 1] + P[(i << 1) | 1] * Q[(i << 1) | 0]) * inv2; } } swap(P, S); swap(Q, T); k >>= 1; if (k < N) break; P.ntt_doubling(); Q.ntt_doubling(); } P.intt(); Q.intt(); return ret + (P * (Q.inv()))[k]; } } template <typename mint> mint kitamasa(long long N, FormalPowerSeries<mint> Q, FormalPowerSeries<mint> a) { assert(!Q.empty() && Q[0] != 0); if (N < (int)a.size()) return a[N]; assert((int)a.size() >= int(Q.size()) - 1); auto P = a.pre((int)Q.size() - 1) * Q; P.resize(Q.size() - 1); return LinearRecurrence<mint>(N, Q, P); } template <typename mint> vector<mint> BerlekampMassey(const vector<mint> &s) { const int N = (int)s.size(); vector<mint> b, c; b.reserve(N + 1); c.reserve(N + 1); b.push_back(mint(1)); c.push_back(mint(1)); mint y = mint(1); for (int ed = 1; ed <= N; ed++) { int l = int(c.size()), m = int(b.size()); mint x = 0; for (int i = 0; i < l; i++) x += c[i] * s[ed - l + i]; b.emplace_back(mint(0)); m++; if (x == mint(0)) continue; mint freq = x / y; if (l < m) { auto tmp = c; c.insert(begin(c), m - l, mint(0)); for (int i = 0; i < m; i++) c[m - 1 - i] -= freq * b[m - 1 - i]; b = tmp; y = x; } else { for (int i = 0; i < m; i++) c[l - 1 - i] -= freq * b[m - 1 - i]; } } reverse(begin(c), end(c)); return c; } using FPS = FormalPowerSeries<mint>; int main() { INT(n); VEC(int,p,n); VEC(int,w,n); Wgraph<int> g(n+1); rep(i,n) { g[p[i]].emplace_back(i+1,w[i]); } vm prob(n+1); prob[0] = 1; vi dep(n+1); auto dfs = REC([&](auto &&f,int now) -> void { ll sw = 0; for(auto &nex:g[now]) { sw += nex.cost; dep[nex] = dep[now] + 1; } mint invsw = mint(sw).inverse(); for(auto &nex:g[now]) { prob[nex] = prob[now] * nex.cost * invsw; f(nex); } }); dfs(0); int MA = max(dep); int K = MA + 1; FPS Q(K + 1); Q[0] = 1; rep(i,1,n+1) { if(g[i].empty()) Q[dep[i] + 1] -= prob[i]; } vm A(2 * K + 2); vm S(2 * K + 2); A[0] = 1; S[0] = 1; rep(i,1,2 * K + 2) { rep(j,1,min((int)i+1,K+1)) { A[i] += -Q[j] * A[i-j]; } S[i] = S[i-1] + A[i]; } debug(A,S,Q); mint SU = 0; rep(i,Q.size()) SU += Q[i]; debug(SU); vm bm = BerlekampMassey<mint>(S); FPS BM = FPS{all(bm)}; debug(BM); INT(q); rep(i,q) { INT(a,k); if(k < dep[a]) { cout << 0 << '\n'; continue; } mint X = kitamasa(k-dep[a],BM,FPS{all(S)}); //debug(X); if(a == 0) cout << X - 1 << '\n'; else cout << X * prob[a] << '\n'; } }