結果

問題 No.1687 What the Heck?
ユーザー McGregorshMcGregorsh
提出日時 2023-05-21 23:57:29
言語 PyPy3
(7.3.15)
結果
WA  
実行時間 -
コード長 12,546 bytes
コンパイル時間 264 ms
コンパイル使用メモリ 82,304 KB
実行使用メモリ 122,764 KB
最終ジャッジ日時 2024-06-01 12:57:49
合計ジャッジ時間 8,703 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 155 ms
91,300 KB
testcase_01 AC 155 ms
91,320 KB
testcase_02 WA -
testcase_03 AC 153 ms
91,304 KB
testcase_04 AC 152 ms
91,400 KB
testcase_05 AC 153 ms
91,460 KB
testcase_06 AC 156 ms
91,436 KB
testcase_07 AC 325 ms
100,868 KB
testcase_08 AC 382 ms
106,020 KB
testcase_09 WA -
testcase_10 AC 279 ms
97,524 KB
testcase_11 WA -
testcase_12 WA -
testcase_13 AC 615 ms
122,500 KB
testcase_14 AC 615 ms
122,268 KB
testcase_15 AC 611 ms
122,764 KB
testcase_16 AC 610 ms
122,712 KB
testcase_17 AC 230 ms
92,852 KB
testcase_18 AC 617 ms
122,616 KB
testcase_19 AC 200 ms
92,352 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

###順序付き多重集合###

import math
from bisect import bisect_left, bisect_right, insort
from typing import Generic, Iterable, Iterator, TypeVar, Union, List
T = TypeVar('T')

class SortedMultiset(Generic[T]):
    BUCKET_RATIO = 50
    REBUILD_RATIO = 170

    def _build(self, a=None) -> None:
        "Evenly divide `a` into buckets."
        if a is None: a = list(self)
        size = self.size = len(a)
        bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO)))
        self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)]
    
    def __init__(self, a: Iterable[T] = []) -> None:
        "Make a new SortedMultiset from iterable. / O(N) if sorted / O(N log N)"
        a = list(a)
        if not all(a[i] <= a[i + 1] for i in range(len(a) - 1)):
            a = sorted(a)
        self._build(a)

    def __iter__(self) -> Iterator[T]:
        for i in self.a:
            for j in i: yield j

    def __reversed__(self) -> Iterator[T]:
        for i in reversed(self.a):
            for j in reversed(i): yield j
    
    def __len__(self) -> int:
        return self.size
    
    def __repr__(self) -> str:
        return "SortedMultiset" + str(self.a)
    
    def __str__(self) -> str:
        s = str(list(self))
        return "{" + s[1 : len(s) - 1] + "}"

    def _find_bucket(self, x: T) -> List[T]:
        "Find the bucket which should contain x. self must not be empty."
        for a in self.a:
            if x <= a[-1]: return a
        return a

    def __contains__(self, x: T) -> bool:
        if self.size == 0: return False
        a = self._find_bucket(x)
        i = bisect_left(a, x)
        return i != len(a) and a[i] == x

    def count(self, x: T) -> int:
        "Count the number of x."
        return self.index_right(x) - self.index(x)

    def add(self, x: T) -> None:
        "Add an element. / O(√N)"
        if self.size == 0:
            self.a = [[x]]
            self.size = 1
            return
        a = self._find_bucket(x)
        insort(a, x)
        self.size += 1
        if len(a) > len(self.a) * self.REBUILD_RATIO:
            self._build()

    def discard(self, x: T) -> bool:
        "Remove an element and return True if removed. / O(√N)"
        if self.size == 0: return False
        a = self._find_bucket(x)
        i = bisect_left(a, x)
        if i == len(a) or a[i] != x: return False
        a.pop(i)
        self.size -= 1
        if len(a) == 0: self._build()
        return True

    def lt(self, x: T) -> Union[T, None]:
        "Find the largest element < x, or None if it doesn't exist."
        for a in reversed(self.a):
            if a[0] < x:
                return a[bisect_left(a, x) - 1]

    def le(self, x: T) -> Union[T, None]:
        "Find the largest element <= x, or None if it doesn't exist."
        for a in reversed(self.a):
            if a[0] <= x:
                return a[bisect_right(a, x) - 1]

    def gt(self, x: T) -> Union[T, None]:
        "Find the smallest element > x, or None if it doesn't exist."
        for a in self.a:
            if a[-1] > x:
                return a[bisect_right(a, x)]

    def ge(self, x: T) -> Union[T, None]:
        "Find the smallest element >= x, or None if it doesn't exist."
        for a in self.a:
            if a[-1] >= x:
                return a[bisect_left(a, x)]
    
    def __getitem__(self, x: int) -> T:
        "Return the x-th element, or IndexError if it doesn't exist."
        if x < 0: x += self.size
        if x < 0: raise IndexError
        for a in self.a:
            if x < len(a): return a[x]
            x -= len(a)
        raise IndexError

    def index(self, x: T) -> int:
        "Count the number of elements < x."
        ans = 0
        for a in self.a:
            if a[-1] >= x:
                return ans + bisect_left(a, x)
            ans += len(a)
        return ans

    def index_right(self, x: T) -> int:
        "Count the number of elements <= x."
        ans = 0
        for a in self.a:
            if a[-1] > x:
                return ans + bisect_right(a, x)
            ans += len(a)
        return ans


###セグメントツリー###

#####segfunc#####
def segfunc(x, y):
    return max(x, y)
    # 最小値    min(x, y) 
    # 最大値    max(x, y)
    # 区間和    x + y
    # 区間積    x * y
    # 最大公約数  math.gcd(x, y)
    # 排他的論理和    x ^ y
#################

#####ide_ele#####
ide_ele = 0
    # 最小値    float('inf')
    # 最大値  -float('inf')
    # 区間和    0
    # 区間積    1
    # 最大公約数  0
    # 排他的論理和 0
#################

class SegTree:
    """
    init(init_val, ide_ele): 配列init_valで初期化 O(N)
    update(k, x): k番目の値をxに更新 O(logN)
    query(l, r): 区間[l, r)をsegfuncしたものを返す O(logN)
    """
    def __init__(self, init_val, segfunc, ide_ele):
        """
        init_val: 配列の初期値
        segfunc: 区間にしたい操作
        ide_ele: 単位元
        n: 要素数
        num: n以上の最小の2のべき乗
        tree: セグメント木(1-index)
        """
        n = len(init_val)
        self.segfunc = segfunc
        self.ide_ele = ide_ele
        self.num = 1 << (n - 1).bit_length()
        self.tree = [ide_ele] * 2 * self.num
        # 配列の値を葉にセット
        for i in range(n):
            self.tree[self.num + i] = init_val[i]
        # 構築していく
        for i in range(self.num - 1, 0, -1):
            self.tree[i] = self.segfunc(self.tree[2 * i], self.tree[2 * i + 1])

    def update(self, k, x):
        """
        k番目の値をxに更新
        k: index(0-index)
        x: update value
        """
        k += self.num
        self.tree[k] = x
        while k > 1:
            self.tree[k >> 1] = self.segfunc(self.tree[k], self.tree[k ^ 1])
            k >>= 1

    def query(self, l, r):
        """
        [l, r)のsegfuncしたものを得る
        l: index(0-index)
        r: index(0-index)
        """
        res = self.ide_ele

        l += self.num
        r += self.num
        while l < r:
            if l & 1:
                res = self.segfunc(res, self.tree[l])
                l += 1
            if r & 1:
                res = self.segfunc(res, self.tree[r - 1])
            l >>= 1
            r >>= 1
        return res


###UnionFind###

class UnionFind:
    """0-indexed"""

    def __init__(self, n):
        self.n = n
        self.parent = [-1] * n
        self.__group_count = n  # 辺がないとき、連結成分はn個あります

    def unite(self, x, y):
        """xとyをマージ"""
        x = self.root(x)
        y = self.root(y)

        if x == y:
            return 0

        self.__group_count -= 1  # 木と木が合体するので、連結成分数が1減ります

        if self.parent[x] > self.parent[y]:
            x, y = y, x

        self.parent[x] += self.parent[y]
        self.parent[y] = x

        return self.parent[x]

    def is_same(self, x, y):
        """xとyが同じ連結成分か判定"""
        return self.root(x) == self.root(y)

    def root(self, x):
        """xの根を取得"""
        if self.parent[x] < 0:
            return x
        else:
            self.parent[x] = self.root(self.parent[x])
            return self.parent[x]

    def size(self, x):
        """xが属する連結成分のサイズを取得"""
        return -self.parent[self.root(x)]

    def all_sizes(self) -> List[int]:
        """全連結成分のサイズのリストを取得 O(N)
        """
        sizes = []
        for i in range(self.n):
            size = self.parent[i]
            if size < 0:
                sizes.append(-size)
        return sizes

    def groups(self) -> List[List[int]]:
        """全連結成分の内容のリストを取得 O(N・α(N))"""
        groups = dict()
        for i in range(self.n):
            p = self.root(i)
            if not groups.get(p):
                groups[p] = []
            groups[p].append(i)
        return list(groups.values())

    def group_count(self) -> int:
        """連結成分の数を取得 O(1)"""
        return self.__group_count  # 変数を返すだけなので、O(1)です


###素因数分解###

def prime_factorize(n: int) -> list:
   return_list = []
   while n % 2 == 0:
   	  return_list.append(2)
   	  n //= 2
   f = 3
   while f * f <= n:
   	  if n % f == 0:
   	  	  return_list.append(f)
   	  	  n //= f
   	  else:
   	  	  f += 2
   if n != 1:
   	  return_list.append(n)
   return return_list


###n進数から10進数変換###

def base_10(num_n,n):
	  num_10 = 0
	  for s in str(num_n):
	  	  num_10 *= n
	  	  num_10 += int(s)
	  return num_10


###10進数からn進数変換###

def base_n(num_10,n):
	  str_n = ''
	  while num_10:
	  	  if num_10%n>=10:
	  	  	  return -1
	  	  str_n += str(num_10%n)
	  	  num_10 //= n
	  return int(str_n[::-1])


###複数の数の最大公約数、最小公倍数###

from functools import reduce

# 最大公約数
def gcd_list(num_list: list) -> int:
	  return reduce(gcd, num_list)

# 最小公倍数
def lcm_base(x: int, y: int) -> int:
	  return (x * y) // gcd(x, y)
def lcm_list(num_list: list):
	  return reduce(lcm_base, num_list, 1)


###約数列挙###

def make_divisors(n):
	  lower_divisors, upper_divisors = [], []
	  i = 1
	  while i * i <= n:
	  	  if n % i == 0:
	  	  	  lower_divisors.append(i)
	  	  	  if i != n // i:
	  	  	  	  upper_divisors.append(n//i)
	  	  i += 1
	  return lower_divisors + upper_divisors[::-1]


###順列###

def nPr(n, r):
	  npr = 1
	  for i in range(n, n-r, -1):
	  	  npr *= i
	  return npr


###組合せ###

def nCr(n, r):
	  factr = 1
	  r = min(r, n - r)
	  for i in range(r, 1, -1):
	  	  factr *= i
	  return nPr(n, r)//factr


###組合せMOD###

def comb(n,k):
    nCk = 1
    MOD = 998244353

    for i in range(n-k+1, n+1):
        nCk *= i
        nCk %= MOD

    for i in range(1,k+1):
        nCk *= pow(i,MOD-2,MOD)
        nCk %= MOD
    return nCk


###回転行列###

def RotationMatrix(before_x, before_y, d):
	  d = math.radians(d)
	  new_x = before_x * math.cos(d) - before_y * math.sin(d)
	  new_y = before_x * math.sin(d) + before_y * math.cos(d)
	  return new_x, new_y


###ダイクストラ###

def daikusutora(N, G, s):
	  dist = [INF] * N
	  que = [(0, s)]
	  dist[s] = 0
	  while que:
	  	  c, v = heappop(que)
	  	  if dist[v] < c:
	  	  	  continue
	  	  for t, cost in G[v]:
	  	  	  if dist[v] + cost < dist[t]:
	  	  	  	  dist[t] = dist[v] + cost
	  	  	  	  heappush(que, (dist[t], t))
	  return dist


import sys, re
from fractions import Fraction
from math import ceil, floor, sqrt, pi, factorial, gcd
from copy import deepcopy
from collections import Counter, deque, defaultdict
from heapq import heapify, heappop, heappush
from itertools import accumulate, product, combinations, combinations_with_replacement, permutations
from bisect import bisect, bisect_left, bisect_right
from functools import reduce
from decimal import Decimal, getcontext, ROUND_HALF_UP
def i_input(): return int(input())
def i_map(): return map(int, input().split())
def i_list(): return list(i_map())
def i_row(N): return [i_input() for _ in range(N)]
def i_row_list(N): return [i_list() for _ in range(N)]
def s_input(): return input()
def s_map(): return input().split()
def s_list(): return list(s_map())
def s_row(N): return [s_input for _ in range(N)]
def s_row_str(N): return [s_list() for _ in range(N)]
def s_row_list(N): return [list(s_input()) for _ in range(N)]
def lcm(a, b): return a * b // gcd(a, b)
def get_distance(x1, y1, x2, y2):
	  d = sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
	  return d
def rotate(table):
   	  n_fild = []
   	  for x in zip(*table[::-1]):
   	  	  n_fild.append(x)
   	  return n_fild
sys.setrecursionlimit(10 ** 7)
INF = float('inf')
MOD = 10 ** 9 + 7
MOD2 = 998244353


def main():
   
   N = int(input())
   A = i_list()
   total = N * (N+1) // 2
   
   
   S = SortedMultiset()
   for i in range(1, N+1):
   	  S.add(i)
   
   cou1 = 0
   cou2 = 0
   for i in range(N-1, -1, -1):
   	  p = S.gt(A[i])
   	  if p != None:
   	  	  cou1 += (i+1)
   	  	  S.discard(p)
   	  else:
   	  	  if A[i] in S:
   	  	  	  S.discard(A[i])
   	  	  else:
   	  	  	  pp = S.gt(0)
   	  	  	  S.discard(pp)
   	  	  	  cou2 += (i+1)
   print(cou1 - cou2)
   
   
if __name__ == '__main__':
    main()
    
0