結果

問題 No.2315 Flying Camera
ユーザー namakoiscatnamakoiscat
提出日時 2023-05-26 21:24:17
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 93 ms / 2,000 ms
コード長 13,224 bytes
コンパイル時間 2,382 ms
コンパイル使用メモリ 223,740 KB
最終ジャッジ日時 2025-02-13 05:37:52
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 24
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

/*
#include <bits/stdc++.h>
using namespace std;
int main(){
*/
// __builtin_popcount() ;
// multiset ;
// unordered_set ;
// unordered_map ;
// reverse ;
/*
#include <atcoder/all>
using namespace atcoder ;
// using mint = modint;
// using mint = modint998244353 ;
// using mint = modint1000000007 ;
*/
#include <bits/stdc++.h>
using namespace std;
/*
#include<boost/multiprecision/cpp_int.hpp>
using namespace boost::multiprecision;
typedef cpp_int cp ;
*/
//--------------
typedef long long ll;
typedef string st ;
typedef long double ld ;
typedef unsigned long long ull ;
using P = pair<ll,ll> ;
using run = pair<char,ll> ;
using Edge = tuple<ll,ll,ll> ;
using AAA = tuple<ll,ll,ll,ll> ;
//--------------
//--------------
const ll mod0 = 1000000007;
const ll mod1 = 998244353 ;
const ll LINF = 1000000000000000000+2 ; //(10^18)
const ld pai = acos(-1) ;
const ld EPS = 1e-10 ;
//--------------
//--------------
#define pb push_back
#define ppb pop_back
#define pf push_front
#define ppf pop_front
#define all(x) x.begin(), x.end()
#define rep(i,a,n) for (ll i = a; i <= (n); ++i)
#define rrep(i,a,b,c) for (ll i = a ; i <= (b) ; i += c)
#define ketu(i,a,n) for (ll i = a; i >= (n); --i)
#define re return 0;
#define fore(i,a) for(auto &i:a)
#define V vector
#define fi first
#define se second
#define C cout
#define E "\n";
#define EE endl;
//--------------
//--------------
st zz = "abcdefghijklmnopqrstuvwxyz" ;
st ZZ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" ;
st tintin = "%" ;
st Y = "Yes" ;
st YY = "No" ;
st KU = " " ;
//--------------
void chmin(ll& x ,ll y){x = min(x,y) ;}
void chmax(ll& x ,ll y){x = max(x,y) ;}
ll max_element(V<ll> &A){
ll res = *max_element(all(A)) ;
return res ;
}
ll max_element_index(V<ll> &A){
ll res = max_element(all(A)) - A.begin() ;
return res ;
}
ll min_element(V<ll> &A){
ll res = *min_element(all(A)) ;
return res ;
}
ll min_element_index(V<ll> &A){
ll res = min_element(all(A)) - A.begin() ;
return res ;
}
vector<ll> Y4 = {0,1,0,-1} ;
vector<ll> X4 = {1,0,-1,0} ;
vector<ll> Y8 = {0,1,1,1,0,-1,-1,-1} ;
vector<ll> X8 = {1,1,0,-1,-1,-1,0,1} ;
ll gcd(ll a, ll b){
if(b == 0){
return a;
}
return gcd(b,a%b) ;
}
ll lcm(ll a, ll b){
ll ans = a*b /gcd(a,b) ;
return ans ;
}
template<class T> T pow_mod(T A, T N, T M) {
T res = 1 % M;
A %= M;
while (N) {
if (N & 1) res = (res * A) % M;
A = (A * A) % M;
N >>= 1;
}
return res;
}
// Miller-Rabin
bool nis(ll N) {
if (N <= 1) return false;
if (N == 2) return true;
if (N == 3) return true ;
if (N == 5) return true ;
if (N == 7) return true ;
if (N == 11) return true ;
if (N % 2 == 0 || N % 3 == 0 || N % 5 == 0 || N % 7 == 0 || N % 11 == 0 ) return false ;
vector<ll> A = {2, 325, 9375, 28178, 450775,9780504, 1795265022};
ll s = 0, d = N - 1;
while (d % 2 == 0) {
++s;
d >>= 1;
}
fore(a,A) {
if (a % N == 0) return true;
ll t, x = pow_mod<__int128_t>(a, d, N);
if (x != 1) {
for (t = 0; t < s; ++t) {
if (x == N - 1) break;
x = __int128_t(x) * x % N;
}
if (t == s) return false;
}
}
return true;
}
// UF.initrep
vector<ll> par;
class UnionFind {
public:
//
void init(ll sz) {
par.resize(sz,-1);
}
//
ll root(ll x) {
if (par[x] < 0) return x;
return par[x] = root(par[x]);
}
//
bool unite(ll x, ll y) {
x = root(x); y = root(y);
if (x == y) return false;
if (par[x] > par[y]) swap(x,y);
par[x] += par[y];
par[y] = x;
return true;
}
//
bool same(ll x, ll y) { return root(x) == root(y);}
//
ll size(ll x) { return -par[root(x)];}
};
UnionFind UF ;
vector<ll> enumdiv(ll n) {
vector<ll> S;
for (ll i = 1; i*i <= n; i++) if (n%i == 0) { S.pb(i); if (i*i != n) S.pb(n / i); }
sort(S.begin(), S.end());
return S;
}
template<typename T> using min_priority_queue = priority_queue<T, vector<T>, greater<T>>;
template<typename T> using max_priority_queue = priority_queue<T, vector<T>, less<T>> ;
// 使 min_priority_queue<ll ()> Q ;
vector<pair<long long, long long>> prime_factorize(long long N){
vector<pair<long long, long long>> res;
for(long long a = 2; a * a <= N; ++a){
if(N % a != 0) continue;
long long ex = 0;
while(N % a == 0) ++ex, N /= a;
res.push_back({a,ex});
}
if(N != 1) res.push_back({N,1});
return res;
}
ll binpower(ll a, ll b,ll c) {
if(!b) return 1 ;
a %= c ;
ll d = binpower(a,b/2,c) ;
(d *= d) %= c ;
if(b%2) (d *= a) %= c ;
return d ;
}
template<typename T>
V<T> sr(V<T> A){
sort(all(A)) ;
reverse(all(A)) ;
return A ;
}
map<ll,ll> Compression(V<ll> A){
sort(all(A)) ;
A.erase(unique(all(A)),A.end()) ;
map<ll,ll> res ;
ll index = 0 ;
fore(u,A){
res[u] = index ;
index ++ ;
}
return res ;
}
V<ll> sort_erase_unique(V<ll> &A){
sort(all(A)) ;
A.erase(unique(all(A)),A.end()) ;
return A ;
}
struct sqrt_machine{
V<ll> A ;
const ll M = 1000000 ;
void init(){
A.pb(-1) ;
rep(i,1,M){
A.pb(i*i) ;
}
A.pb(LINF) ;
}
bool scan(ll a){
ll pos = lower_bound(all(A),a) - A.begin() ;
if(A[pos] == -1 || A[pos] == LINF || A[pos] != a)return false ;
return true ;
}
};
sqrt_machine SM ;
ll a_b(V<ll> A,ll a,ll b){
ll res = 0 ;
res += upper_bound(all(A),b) - lower_bound(all(A),a) ;
return res ;
}
struct era{
ll check[10000010] ;
void init(){
rep(i,2,10000000){
if(check[i] == 0){
for(ll j = i + i ;j <= 10000000 ; j += i){
check[j] ++ ;
}
}
}
}
bool look(ll x){
if(x == 1)return false ;
if(check[x] == 0)return true ;
else return false ;
}
ll enu_count(ll x){
if(x == 1)return 1 ;
if(check[x] == 0)return 1 ;
return check[x] ;
}
};
era era ;
st ten_to_two(ll x){
st abc = "" ;
if(x == 0){
return "0" ;
}
while(x > 0){
abc = char(x%2 + '0') + abc ;
x /= 2 ;
}
return abc ;
}
ll two_to_ten(st op){
ll abc = 0 ;
ll K = op.size() ;
for(ll i = 0 ;i < K ;i++){
abc = abc * 2 + ll(op[i] - '0') ;
}
return abc ;
}
ll powpow(ll A , ll B){
ll res = 1 ;
rep(i,1,B){
res *= A ;
}
return res ;
}
V<run> Run_Length_Encoding(st S){
ll N = S.size() ;
V<pair<char,ll>> A ;
ll count = 0 ;
char cc ;
bool RLEflag = false ;
if(N == 1){
A.pb({S[0],1}) ;
RLEflag = true ;
}
rep(i,0,N-1){
if(RLEflag == true)break ;
if(i == 0){
cc = S[i] ;
count = 1 ;
continue ;
}
if(i == N-1){
if(S[i] == cc){
A.pb({cc,count + 1}) ;
}else{
A.pb({cc,count}) ;
A.pb({S[i],1}) ;
}
break ;
}
if(S[i] == cc){
count ++ ;
}else{
A.pb({cc,count}) ;
cc = S[i] ;
count = 1 ;
}
}
return A ;
}
struct Two_Dimensional_Vector{
void pr(V<V<ll>> A){
ll N = A.size() ;
ll M = A[0].size() ;
rep(i,0,N-1){
rep(j,0,M-1){
C << A[i][j] << KU ;
}
C << E
}
}
V<V<ll>> iv(ll N , ll M){
V<V<ll>> A(N,V<ll>(M)) ;
rep(i,0,N-1){
rep(j,0,M-1){
cin >> A[i][j] ;
}
}
return A ;
}
ll Matrix_count(V<V<ll>> A,ll x){
ll N = A.size() ;
ll M = A[0].size() ;
ll count = 0 ;
rep(i,0,N-1){
rep(j,0,M-1){
if(A[i][j] == x)count ++ ;
}
}
return count ;
}
} ;
Two_Dimensional_Vector tdv ;
ll kiriage(ll a , ll b){
return (a + b - 1) / b ;
}
ll a_up(V<ll> &A , ll x){
if(A[A.size()-1] < x)return -1 ;
ll res = lower_bound(all(A),x) - A.begin() ;
return A[res] ;
}
ll b_down(V<ll> &B , ll x){
if(B[0] > x)return -1 ;
ll res = upper_bound(all(B),x) - B.begin() ;
return B[res-1] ;
}
ll Permutation(ll N){
ll res = 1 ;
rep(i,1,N)res *= i ;
return res ;
}
V<V<ll>> Next_permutation(ll N){
ll Size = Permutation(N) ;
V<V<ll>> res(Size) ;
V<ll> per(N) ;
rep(i,0,N-1)per[i] = i ;
ll count = 0 ;
do{
fore(u,per){
res[count].pb(u) ;
}
count ++ ;
}while(next_permutation(per.begin(),per.end()));
return res ;
}
/*
st Regex(st S, st A ,st B){
return regex_replace(S,regex(A),B) ;
}
st erase_string(st S , st T){
st ans = S.erase(S.find(T),T.length()) ;
return ans ;
}
*/
int main(void){
ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
// SM.init() ;
// era.init() ;
// max_element(V<ll> A) A
// max_element_index(V<ll> A) Aindex
// min_element(V<ll> A) A
// min_element_index(V<ll> A) Aindex
// gcd(ll a , ll b) gcd
// lcm(ll a ,ll b ) lcm
// nis(ll a) true
// UF UF.init(ll N) ; UF.root(i) ; UF.unite(a,b) ; UF.same(a,b) ; UF.size(i) ;
// enumdiv(ll a )
// prime_factorize(ll p) ab
// binpower(a,b,c) ab O(logb)
// sr(V<ll> A) sort --→ reverse   auto
// sort_erase_unique(V<ll> A) sorteraseunique
// Compression(V<ll> A) map
// SM.scan(ll a)  true  √10^6 SM.init()
// a_b(A,a,b) [a,b] ---→ upper_bound(all(A),b) - lower_bound(all(A),a) ;
// era.look(ll a) --→ true / era.enu_count(ll a) --→ 11 1  10^7
// ten_to_two(ll x) 10 ll --→ st
// two_to_ten(st a) 210 st --→ ll
// powpow(ll a,ll b) a^b
// Run_Length_Encoding(st S) pair<char,ll>
// Regex(st S, st A , st B) SAB 使
// erase_string(st S , st T) ST
// Two_Dimensional_Vector tdv.pr(V<V<ll>> A) A tdv.iv(N,M) main auto A = tdv.iv(N,M) ; Matrix_count(V<V<ll>> , x
    )Ax
// kiriage(ll a , ll b) a  b
// a_up(V<ll> A , ll x) sort-1.
// b_down(V<ll> B , ll x)sortx -1
// Permutation(ll N) N!20
// V<V<ll>> Next_permutation(ll N) next_permutation.
// (double)clock()/CLOCKS_PER_SEC>1.987
// multiset1 A.erase(A.find(x)) ;
// mod0 --→ 1000000007 mod1 --→ 998244353
// size
ll N ;
cin >> N ;
V<P> xy(N) ;
rep(i,0,N-1){
ll x,y ;
cin >> x >> y ;
xy[i] = {x,y} ;
}
ll ans = LINF ;
rep(i,0,500){
rep(j,0,500){
ll sum = 0 ;
rep(k,0,N-1){
auto [x,y] = xy[k] ;
sum += (abs(i - y) + abs(j - x)) ;
}
chmin(ans,sum) ;
}
}
C << ans << E
// if(dx < 0 || dy < 0 || dx >= W || dy >= H) continue ;
// C << fixed << setprecision(10) << //
re
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0