結果
問題 | No.2314 Backflip |
ユーザー | Iorn |
提出日時 | 2023-05-26 21:33:26 |
言語 | Python3 (3.12.2 + numpy 1.26.4 + scipy 1.12.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 28,917 bytes |
コンパイル時間 | 239 ms |
コンパイル使用メモリ | 15,360 KB |
実行使用メモリ | 14,848 KB |
最終ジャッジ日時 | 2024-06-07 05:47:10 |
合計ジャッジ時間 | 1,584 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 56 ms
14,592 KB |
testcase_01 | AC | 56 ms
14,592 KB |
testcase_02 | WA | - |
testcase_03 | AC | 56 ms
14,592 KB |
testcase_04 | AC | 58 ms
14,592 KB |
testcase_05 | AC | 56 ms
14,464 KB |
testcase_06 | AC | 57 ms
14,592 KB |
testcase_07 | AC | 57 ms
14,592 KB |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
ソースコード
import time from typing import Generic, Iterable, Iterator, TypeVar, Optional, List from array import array from bisect import bisect_left, bisect_right, insort import collections import copy import heapq import itertools import decimal from decimal import Decimal import math import string import sys sys.setrecursionlimit(10**6) def I(): return int(sys.stdin.readline().rstrip()) def MI(): return map(int, sys.stdin.readline().rstrip().split()) def LI(): return list(map(int, sys.stdin.readline().rstrip().split())) def LII(H): return [list(map(int, sys.stdin.readline().rstrip().split())) for _ in range(H)] def S(): return sys.stdin.readline().rstrip() def SS(H): return [S() for _ in range(H)] def LS(): return list(sys.stdin.readline().rstrip().split()) def ARRAY(L): return array("i", L) INF = 1 << 61 DIFF = 10 ** -9 DX = [1, 0, -1, 0, 1, 1, -1, -1] DY = [0, 1, 0, -1, 1, -1, 1, -1] MOD = 998244353 # 累積和 ans=list(itertools.accumulate(L)) # 順列 ans=list(itertools.permutation(L)) # 直積 ans=list(itertools.product(L,M)) # 重複なし組み合わせ ans=list(itertools.combinations(L,2)) # 重複あり組み合わせ ans=list(itertools.combinations_with_replacement(L,2)) # nCr ans=math.comb(n,r) # 日付を比較 def compare_date(date1, date2): # date = "2019/04/30" formatted_date1 = time.strptime(date1, "%Y/%m/%d") formatted_date2 = time.strptime(date2, "%Y/%m/%d") return formatted_date1 < formatted_date2 # 四捨五入 def half_up(x): return Decimal(x).quantize(Decimal('1'), rounding=decimal.ROUND_HALF_UP) # 切り上げ def ceiling(x): return Decimal(x).quantize(Decimal('0.1'), rounding=decimal.ROUND_CEILING) # 切り捨て def floor(x): return Decimal(x).quantize(Decimal('0.1'), rounding=decimal.ROUND_FLOOR) # Nまでの数を素数かどうか判定(エラトステネスのふるい) def prime_list(n: int): is_prime = [True] * (n + 1) is_prime[0], is_prime[1] = False, False for i in range(2, int(math.sqrt(n)) + 1): if is_prime[i]: for j in range(2 * i, n + 1, i): is_prime[j] = False return is_prime # 素因数分解 def prime_factorization(N: int): arr = [] sqrt = int(math.sqrt(N)) for i in range(2, sqrt+1): if N % i == 0: cnt = 0 while N % i == 0: cnt += 1 N //= i arr.append([i, cnt]) if N != 1: arr.append([N, 1]) return arr # 1文字ずつ文字列をずらしたときの最長共通接頭辞の長さ def z_algorithm(S: string): n = len(S) rtn = [-1]*n rtn[0] = n i, j = 1, 0 while i < len(S): while i+j < len(S) and S[j] == S[i+j]: j += 1 rtn[i] = j if j == 0: i += 1 k = 1 while i+k < len(S) and k+rtn[k] < j: rtn[i+k] = rtn[k] k += 1 i += k j -= k return rtn # Nまでの積をxで何回割り切れるか def divide_num(N: int, x: int): rtn = 0 i = 1 while pow(x, i) <= N: rtn += N//pow(x, i) i += 1 return rtn # 拡張ユークリッド互除法 def xgcd(a, b): x0, y0, x1, y1 = 1, 0, 0, 1 while b != 0: q, a, b = a//b, b, a % b x0, x1 = x1, x0-q*x1 y0, y1 = y1, y0-q*y1 return a, x0, y0 # 逆元を求める def modinv(a, mod=MOD): g, x, y = xgcd(a, mod) if g != 1: raise Exception("moduler inverse does not exist") else: return x % mod # combinationの逆元を求める def combination_modinv(n, r, mod=MOD): if n < 0 or r < 0 or n < r: return 0 fact = [1]*(n+2) fact_inv = [1]*(n+2) for i in range(1, n+2): fact[i] = (fact[i-1]*i) % mod fact_inv[n+1] = pow(fact[n+1], mod-2, mod) for i in range(n, -1, -1): fact_inv[i] = (fact_inv[i+1]*(i+1)) % mod return (fact[n]*fact_inv[r] % mod)*fact_inv[n-r] % mod class BIT: # 長さN+1の配列を初期化 def __init__(self, N): self.size = N self.bit = [0]*(N+1) # i番目までの和を求める def sum(self, i): res = 0 while i > 0: res += self.bit[i] # フェニック木のi番目の値を加算 i -= -i & i # 最も右にある1の桁を0にする return res # i番目の値にxを足して更新する def add(self, i, x): while i <= self.size: self.bit[i] += x # フェニック木のi番目にxを足して更新 i += -i & i # 最も右にある1の桁に1を足す # N mod p = a, N mod q = b # px + a = qy + b # px - qy = b-a # px = 1 mod q def crp(a, p, b, q): x = pow(p, -1, q) x *= b-a x %= q return p*x + a def Dijkstra(edges, num_node): """ 経路の表現 [終点, 辺の値] A, B, C, D, ... → 0, 1, 2, ...とする """ node = [float('inf')] * num_node # スタート地点以外の値は∞で初期化 node[0] = 0 # スタートは0で初期化 node_name = [i for i in range(num_node)] # ノードの名前を0~ノードの数で表す while len(node_name) > 0: r = node_name[0] # 最もコストが小さい頂点を探す for i in node_name: if node[i] < node[r]: r = i # コストが小さい頂点が見つかると更新 # 最もコストが小さい頂点を取り出す min_point = node_name.pop(node_name.index(r)) # 経路の要素を各変数に格納することで,視覚的に見やすくする for factor in edges[min_point]: goal = factor[0] # 終点 cost = factor[1] # コスト # 更新条件 if node[min_point] + cost < node[goal]: node[goal] = node[min_point] + cost # 更新 return node # 行きがけ、帰りがけの順番を取得 def EulerTour(n, graph, root): """ (n: int, graph: List[List[int]], root: int) -> Tuple[List[int], List[int], List[int]]: :param n: the number of vertex points :param graph: 2D matrix of N vertices given by the edges :param root: start node index :return tour: order of visited vertex :return in_time: first visiting time of each vertex :return out_time: last visiting time of each vertex example: graph = [[] for _ in range(n)] for _ in range(n): a, b = map(int, input().split()) graph[a].append(b) graph[b].append(a) tour, in_time, out_time = EulerTour(n, graph, 0) """ parent = [-1] * n stack = [~root, root] # postorder, preorder curr_time = -1 tour = [] in_time = [-1] * n out_time = [-1] * n while stack: curr_node = stack.pop() curr_time += 1 if curr_node >= 0: # preorder tour.append(curr_node) if in_time[curr_node] == -1: in_time[curr_node] = curr_time for next_node in graph[curr_node]: if next_node != parent[curr_node]: parent[next_node] = curr_node stack.append(~next_node) stack.append(next_node) elif curr_node < 0: # postorder out_time[~curr_node] = curr_time if parent[~curr_node] != -1: tour.append(parent[~curr_node]) return tour, in_time, out_time class UnionFind(): def __init__(self, n): self.n = n self.parents = [-1] * n def find(self, x): if self.parents[x] < 0: return x else: self.parents[x] = self.find(self.parents[x]) return self.parents[x] def union(self, x, y): x = self.find(x) y = self.find(y) if x == y: return if self.parents[x] > self.parents[y]: x, y = y, x self.parents[x] += self.parents[y] self.parents[y] = x def size(self, x): return -self.parents[self.find(x)] def same(self, x, y): return self.find(x) == self.find(y) def members(self, x): root = self.find(x) return [i for i in range(self.n) if self.find(i) == root] def roots(self): return [i for i, x in enumerate(self.parents) if x < 0] def group_count(self): return len(self.roots()) def all_group_members(self): group_members = collections.defaultdict(list) for member in range(self.n): group_members[self.find(member)].append(member) return group_members def __str__(self): return '\n'.join(f'{r}: {m}' for r, m in self.all_group_members().items()) def make_kmp_table(t): i = 2 j = 0 m = len(t) tbl = [0] * (m + 1) tbl[0] = -1 while i <= m: if t[i - 1] == t[j]: tbl[i] = j + 1 i += 1 j += 1 elif j > 0: j = tbl[j] else: tbl[i] = 0 i += 1 return tbl # 文字列Sの中に文字列Tが存在するかどうか def kmp(s, t): matched_indices = [] tbl = make_kmp_table(t) i = 0 j = 0 n = len(s) m = len(t) while i + j < n: if t[j] == s[i + j]: j += 1 if j == m: matched_indices.append(i) i += j - tbl[j] j = tbl[j] else: i += j - tbl[j] if j > 0: j = tbl[j] return matched_indices # 強連結成分分解 class SCC: def __init__(self, n): self.n = n self.graph = [[] for _ in range(n)] self.rev_graph = [[] for _ in range(n)] self.labels = [-1] * n self.lb_cnt = 0 def add_edge(self, v, nxt_v): self.graph[v].append(nxt_v) self.rev_graph[nxt_v].append(v) def build(self): self.post_order = [] self.used = [False] * self.n for v in range(self.n): if not self.used[v]: self._dfs(v) for v in reversed(self.post_order): if self.labels[v] == -1: self._rev_dfs(v) self.lb_cnt += 1 def _dfs(self, v): stack = [v, 0] while stack: v, idx = stack[-2:] if not idx and self.used[v]: stack.pop() stack.pop() else: self.used[v] = True if idx < len(self.graph[v]): stack[-1] += 1 stack.append(self.graph[v][idx]) stack.append(0) else: stack.pop() self.post_order.append(stack.pop()) def _rev_dfs(self, v): stack = [v] self.labels[v] = self.lb_cnt while stack: v = stack.pop() for nxt_v in self.rev_graph[v]: if self.labels[nxt_v] != -1: continue stack.append(nxt_v) self.labels[nxt_v] = self.lb_cnt def construct(self): self.dag = [[] for i in range(self.lb_cnt)] self.groups = [[] for i in range(self.lb_cnt)] for v, lb in enumerate(self.labels): for nxt_v in self.graph[v]: nxt_lb = self.labels[nxt_v] if lb == nxt_lb: continue self.dag[lb].append(nxt_lb) self.groups[lb].append(v) return self.dag, self.groups class SegTree: """ 点代入/区間総和 操作 segfunc 単位元 最小値 min(x, y) float('inf') 最大値 max(x, y) -float('inf') 区間和 x + y 0 区間積 x * y 1 最大公約数 math.gcd(x, y) 0 segfunc : 和の計算がデフォ、最小値・最大値などのモノイドに置換 add : k番目の値にxを加算 update : k番目の値をxに更新 query : 区間[l,r)のseg_funcモノイドの結果を出力 """ def __init__(self, init_val: list, ide_ele: int = 0): n = len(init_val) self.ide_ele = ide_ele self.num = 1 << (n-1).bit_length() self.tree = [ide_ele]*2*self.num for i in range(n): self.tree[self.num+i] = init_val[i] for i in range(self.num-1, 0, -1): self.tree[i] = self.segfunc(self.tree[2*i], self.tree[2*i+1]) def segfunc(x, y): return x+y def add(self, k, x): k += self.num self.tree[k] += x while k > 1: self.tree[k >> 1] = self.segfunc(self.tree[k], self.tree[k ^ 1]) k >>= 1 def update(self, k, x): k += self.num self.tree[k] = x while k > 1: self.tree[k >> 1] = self.segfunc(self.tree[k], self.tree[k ^ 1]) k >>= 1 def query(self, l, r): res = self.ide_ele l += self.num r += self.num while l < r: if l & 1: res = self.segfunc(res, self.tree[l]) l += 1 if r & 1: res = self.segfunc(res, self.tree[r-1]) l >>= 1 r >>= 1 return res class LazySegTree_RAQ: """ 区間代入/区間総和 seg_func : 和の計算がデフォ、最小値・最大値などのモノイドに置換 add : 区間[l,r)の値にxを加算 query : 区間[l,r)のseg_funcモノイドの結果を出力 """ def __init__(self, init_val, segfunc=None, ide_ele: int = 0): n = len(init_val) self.ide_ele = ide_ele if segfunc is not None: self.segfunc = segfunc self.num = 1 << (n-1).bit_length() self.tree = [ide_ele]*2*self.num self.lazy = [0]*2*self.num for i in range(n): self.tree[self.num+i] = init_val[i] for i in range(self.num-1, 0, -1): self.tree[i] = self.segfunc(self.tree[2*i], self.tree[2*i+1]) def segfunc(x, y): return x+y def gindex(self, l, r): l += self.num r += self.num lm = l >> (l & -l).bit_length() rm = r >> (r & -r).bit_length() while r > l: if l <= lm: yield l if r <= rm: yield r r >>= 1 l >>= 1 while l: yield l l >>= 1 def propagates(self, *ids): for i in reversed(ids): v = self.lazy[i] if v == 0: continue self.lazy[i] = 0 self.lazy[2*i] += v self.lazy[2*i+1] += v self.tree[2*i] += v self.tree[2*i+1] += v def add(self, l, r, x): ids = self.gindex(l, r) l += self.num r += self.num while l < r: if l & 1: self.lazy[l] += x self.tree[l] += x l += 1 if r & 1: self.lazy[r-1] += x self.tree[r-1] += x r >>= 1 l >>= 1 for i in ids: self.tree[i] = self.segfunc(self.tree[2*i], self.tree[2*i+1]) + self.lazy[i] def query(self, l, r): self.propagates(*self.gindex(l, r)) res = self.ide_ele l += self.num r += self.num while l < r: if l & 1: res = self.segfunc(res, self.tree[l]) l += 1 if r & 1: res = self.segfunc(res, self.tree[r-1]) l >>= 1 r >>= 1 return res class LazySegTree_RUQ: """ 区間代入/区間総和 seg_func : 和の計算がデフォ、最小値・最大値などのモノイドに置換 update : 区間[l,r)の値をxに加算 query : 区間[l,r)のseg_funcモノイドの結果を出力 """ def __init__(self, init_val: list, segfunc=None, ide_ele: int = 0): n = len(init_val) self.ide_ele = ide_ele self.num = 1 << (n-1).bit_length() if segfunc is not None: self.segfunc = segfunc self.tree = [ide_ele]*2*self.num self.lazy = [None]*2*self.num for i in range(n): self.tree[self.num+i] = init_val[i] for i in range(self.num-1, 0, -1): self.tree[i] = self.segfunc(self.tree[2*i], self.tree[2*i+1]) def segfunc(x, y): return min(x, y) def gindex(self, l, r): l += self.num r += self.num lm = l >> (l & -l).bit_length() rm = r >> (r & -r).bit_length() while r > l: if l <= lm: yield l if r <= rm: yield r r >>= 1 l >>= 1 while l: yield l l >>= 1 def propagates(self, *ids): for i in reversed(ids): v = self.lazy[i] if v is None: continue self.lazy[i] = None self.lazy[2*i] = v self.lazy[2*i+1] = v self.tree[2*i] = v self.tree[2*i+1] = v def update(self, l, r, x): ids = self.gindex(l, r) self.propagates(*self.gindex(l, r)) l += self.num r += self.num while l < r: if l & 1: self.lazy[l] = x self.tree[l] = x l += 1 if r & 1: self.lazy[r-1] = x self.tree[r-1] = x r >>= 1 l >>= 1 for i in ids: self.tree[i] = self.segfunc(self.tree[2*i], self.tree[2*i+1]) def query(self, l, r): ids = self.gindex(l, r) self.propagates(*self.gindex(l, r)) res = self.ide_ele l += self.num r += self.num while l < r: if l & 1: res = self.segfunc(res, self.tree[l]) l += 1 if r & 1: res = self.segfunc(res, self.tree[r-1]) l >>= 1 r >>= 1 return res T = TypeVar('T') class SortedSet(Generic[T]): BUCKET_RATIO = 50 REBUILD_RATIO = 170 def _build(self, a=None) -> None: "Evenly divide `a` into buckets." if a is None: a = list(self) size = self.size = len(a) bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO))) self.a = [a[size * i // bucket_size: size * (i + 1) // bucket_size] for i in range(bucket_size)] def __init__(self, a: Iterable[T] = []) -> None: "Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)" a = list(a) if not all(a[i] < a[i + 1] for i in range(len(a) - 1)): a = sorted(set(a)) self._build(a) def __iter__(self) -> Iterator[T]: for i in self.a: for j in i: yield j def __reversed__(self) -> Iterator[T]: for i in reversed(self.a): for j in reversed(i): yield j def __len__(self) -> int: return self.size def __repr__(self) -> str: return "SortedSet" + str(self.a) def __str__(self) -> str: s = str(list(self)) return "{" + s[1: len(s) - 1] + "}" def _find_bucket(self, x: T) -> List[T]: "Find the bucket which should contain x. self must not be empty." for a in self.a: if x <= a[-1]: return a return a def __contains__(self, x: T) -> bool: if self.size == 0: return False a = self._find_bucket(x) i = bisect_left(a, x) return i != len(a) and a[i] == x def add(self, x: T) -> bool: "Add an element and return True if added. / O(√N)" if self.size == 0: self.a = [[x]] self.size = 1 return True a = self._find_bucket(x) i = bisect_left(a, x) if i != len(a) and a[i] == x: return False a.insert(i, x) self.size += 1 if len(a) > len(self.a) * self.REBUILD_RATIO: self._build() return True def discard(self, x: T) -> bool: "Remove an element and return True if removed. / O(√N)" if self.size == 0: return False a = self._find_bucket(x) i = bisect_left(a, x) if i == len(a) or a[i] != x: return False a.pop(i) self.size -= 1 if len(a) == 0: self._build() return True def lt(self, x: T) -> Optional[T]: "Find the largest element < x, or None if it doesn't exist." for a in reversed(self.a): if a[0] < x: return a[bisect_left(a, x) - 1] def le(self, x: T) -> Optional[T]: "Find the largest element <= x, or None if it doesn't exist." for a in reversed(self.a): if a[0] <= x: return a[bisect_right(a, x) - 1] def gt(self, x: T) -> Optional[T]: "Find the smallest element > x, or None if it doesn't exist." for a in self.a: if a[-1] > x: return a[bisect_right(a, x)] def ge(self, x: T) -> Optional[T]: "Find the smallest element >= x, or None if it doesn't exist." for a in self.a: if a[-1] >= x: return a[bisect_left(a, x)] def __getitem__(self, x: int) -> T: "Return the x-th element, or IndexError if it doesn't exist." if x < 0: x += self.size if x < 0: raise IndexError for a in self.a: if x < len(a): return a[x] x -= len(a) raise IndexError def index(self, x: T) -> int: "Count the number of elements < x." ans = 0 for a in self.a: if a[-1] >= x: return ans + bisect_left(a, x) ans += len(a) return ans def index_right(self, x: T) -> int: "Count the number of elements <= x." ans = 0 for a in self.a: if a[-1] > x: return ans + bisect_right(a, x) ans += len(a) return ans class SortedMultiset(Generic[T]): BUCKET_RATIO = 50 REBUILD_RATIO = 170 def _build(self, a=None) -> None: "Evenly divide `a` into buckets." if a is None: a = list(self) size = self.size = len(a) bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO))) self.a = [a[size * i // bucket_size: size * (i + 1) // bucket_size] for i in range(bucket_size)] def __init__(self, a: Iterable[T] = []) -> None: "Make a new SortedMultiset from iterable. / O(N) if sorted / O(N log N)" a = list(a) if not all(a[i] <= a[i + 1] for i in range(len(a) - 1)): a = sorted(a) self._build(a) def __iter__(self) -> Iterator[T]: for i in self.a: for j in i: yield j def __reversed__(self) -> Iterator[T]: for i in reversed(self.a): for j in reversed(i): yield j def __len__(self) -> int: return self.size def __repr__(self) -> str: return "SortedMultiset" + str(self.a) def __str__(self) -> str: s = str(list(self)) return "{" + s[1: len(s) - 1] + "}" def _find_bucket(self, x: T) -> List[T]: "Find the bucket which should contain x. self must not be empty." for a in self.a: if x <= a[-1]: return a return a def __contains__(self, x: T) -> bool: if self.size == 0: return False a = self._find_bucket(x) i = bisect_left(a, x) return i != len(a) and a[i] == x def count(self, x: T) -> int: "Count the number of x." return self.index_right(x) - self.index(x) def add(self, x: T) -> None: "Add an element. / O(√N)" if self.size == 0: self.a = [[x]] self.size = 1 return a = self._find_bucket(x) insort(a, x) self.size += 1 if len(a) > len(self.a) * self.REBUILD_RATIO: self._build() def discard(self, x: T) -> bool: "Remove an element and return True if removed. / O(√N)" if self.size == 0: return False a = self._find_bucket(x) i = bisect_left(a, x) if i == len(a) or a[i] != x: return False a.pop(i) self.size -= 1 if len(a) == 0: self._build() return True def lt(self, x: T) -> Optional[T]: "Find the largest element < x, or None if it doesn't exist." for a in reversed(self.a): if a[0] < x: return a[bisect_left(a, x) - 1] def le(self, x: T) -> Optional[T]: "Find the largest element <= x, or None if it doesn't exist." for a in reversed(self.a): if a[0] <= x: return a[bisect_right(a, x) - 1] def gt(self, x: T) -> Optional[T]: "Find the smallest element > x, or None if it doesn't exist." for a in self.a: if a[-1] > x: return a[bisect_right(a, x)] def ge(self, x: T) -> Optional[T]: "Find the smallest element >= x, or None if it doesn't exist." for a in self.a: if a[-1] >= x: return a[bisect_left(a, x)] def __getitem__(self, x: int) -> T: "Return the x-th element, or IndexError if it doesn't exist." if x < 0: x += self.size if x < 0: raise IndexError for a in self.a: if x < len(a): return a[x] x -= len(a) raise IndexError def index(self, x: T) -> int: "Count the number of elements < x." ans = 0 for a in self.a: if a[-1] >= x: return ans + bisect_left(a, x) ans += len(a) return ans def index_right(self, x: T) -> int: "Count the number of elements <= x." ans = 0 for a in self.a: if a[-1] > x: return ans + bisect_right(a, x) ans += len(a) return ans # 配列の転倒数を求める(o(NlogN)) def inversion_num(L: list): max_N = max(L) bit = BIT(max_N) cnt = 0 for i, l in enumerate(L): cnt += i-bit.sum(l) bit.add(l, 1) return cnt # 約数列挙 def make_divisors(n): lower_divisors, upper_divisors = [], [] i = 1 while i*i <= n: if n % i == 0: lower_divisors.append(i) if i != n // i: upper_divisors.append(n//i) i += 1 return lower_divisors + upper_divisors[::-1] # Nまでの素数列挙 # 計算量 O(logN) def prime_list(N): H = [False] * (N + 1) primes = [] for i in range(2, N + 1): if H[i]: continue primes.append(i) for j in range(i, N + 1, i): H[j] = True return primes class ModInt: def __init__(self, x, mod=998244353): self.x = x % mod self.mod = mod def __str__(self): return str(self.x) __repr__ = __str__ def __add__(self, other): return ( ModInt(self.x + other.x) if isinstance(other, ModInt) else ModInt(self.x + other) ) def __sub__(self, other): return ( ModInt(self.x - other.x) if isinstance(other, ModInt) else ModInt(self.x - other) ) def __mul__(self, other): return ( ModInt(self.x*other.x) if isinstance(other, ModInt) else ModInt(self.x*other) ) def __truediv__(self, other): return ( ModInt( self.x*pow(other.x, self.mod-2, self.mod) ) if isinstance(other, ModInt) else ModInt(self.x*pow(other, self.mod-2, self.mod)) ) def __pow__(self, other): return ( ModInt(pow(self.x, other.x, self.mod)) if isinstance(other, ModInt) else ModInt(pow(self.x, other, self.mod)) ) __radd__ = __add__ def __rsub__(self, other): return ( ModInt(other.x-self.x) if isinstance(other, ModInt) else ModInt(other-self.x) ) __rmul__ = __mul__ def __rtruediv__(self, other): return ( ModInt( other.x * pow(self.x, self.mod-2, self.mod) ) if isinstance(other, ModInt) else ModInt(other * pow(self.x, self.mod-2, self.mod)) ) def __rpow__(self, other): return ( ModInt(pow(other.x, self.x, self.mod)) if isinstance(other, ModInt) else ModInt(pow(other, self.x, self.mod)) ) def main(): N = int(S(), 2) ans = N ^ 1 print(str(bin(ans))[2:]) if __name__ == "__main__": main()