結果

問題 No.2316 Freight Train
ユーザー IornIorn
提出日時 2023-05-26 22:05:26
言語 Python3
(3.13.1 + numpy 2.2.1 + scipy 1.14.1)
結果
AC  
実行時間 893 ms / 2,000 ms
コード長 29,137 bytes
コンパイル時間 450 ms
コンパイル使用メモリ 15,232 KB
実行使用メモリ 35,732 KB
最終ジャッジ日時 2024-12-25 07:07:26
合計ジャッジ時間 21,178 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 26
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

import time
from typing import Generic, Iterable, Iterator, TypeVar, Optional, List
from array import array
from bisect import bisect_left, bisect_right, insort
import collections
import copy
import heapq
import itertools
import decimal
from decimal import Decimal
import math
import string
import sys
sys.setrecursionlimit(10**6)
def I(): return int(sys.stdin.readline().rstrip())
def MI(): return map(int, sys.stdin.readline().rstrip().split())
def LI(): return list(map(int, sys.stdin.readline().rstrip().split()))
def LII(H): return [list(map(int, sys.stdin.readline().rstrip().split())) for _ in range(H)]
def S(): return sys.stdin.readline().rstrip()
def SS(H): return [S() for _ in range(H)]
def LS(): return list(sys.stdin.readline().rstrip().split())
def ARRAY(L): return array("i", L)
INF = 1 << 61
DIFF = 10 ** -9
DX = [1, 0, -1, 0, 1, 1, -1, -1]
DY = [0, 1, 0, -1, 1, -1, 1, -1]
MOD = 998244353
# ans=list(itertools.accumulate(L))
# ans=list(itertools.permutation(L))
# ans=list(itertools.product(L,M))
# ans=list(itertools.combinations(L,2))
# ans=list(itertools.combinations_with_replacement(L,2))
# nCr ans=math.comb(n,r)
#
def compare_date(date1, date2):
# date = "2019/04/30"
formatted_date1 = time.strptime(date1, "%Y/%m/%d")
formatted_date2 = time.strptime(date2, "%Y/%m/%d")
return formatted_date1 < formatted_date2
#
def half_up(x):
return Decimal(x).quantize(Decimal('1'), rounding=decimal.ROUND_HALF_UP)
#
def ceiling(x):
return Decimal(x).quantize(Decimal('0.1'), rounding=decimal.ROUND_CEILING)
#
def floor(x):
return Decimal(x).quantize(Decimal('0.1'), rounding=decimal.ROUND_FLOOR)
# N
def prime_list(n: int):
is_prime = [True] * (n + 1)
is_prime[0], is_prime[1] = False, False
for i in range(2, int(math.sqrt(n)) + 1):
if is_prime[i]:
for j in range(2 * i, n + 1, i):
is_prime[j] = False
return is_prime
#
def prime_factorization(N: int):
arr = []
sqrt = int(math.sqrt(N))
for i in range(2, sqrt+1):
if N % i == 0:
cnt = 0
while N % i == 0:
cnt += 1
N //= i
arr.append([i, cnt])
if N != 1:
arr.append([N, 1])
return arr
# 1
def z_algorithm(S: string):
n = len(S)
rtn = [-1]*n
rtn[0] = n
i, j = 1, 0
while i < len(S):
while i+j < len(S) and S[j] == S[i+j]:
j += 1
rtn[i] = j
if j == 0:
i += 1
k = 1
while i+k < len(S) and k+rtn[k] < j:
rtn[i+k] = rtn[k]
k += 1
i += k
j -= k
return rtn
# Nx
def divide_num(N: int, x: int):
rtn = 0
i = 1
while pow(x, i) <= N:
rtn += N//pow(x, i)
i += 1
return rtn
#
def xgcd(a, b):
x0, y0, x1, y1 = 1, 0, 0, 1
while b != 0:
q, a, b = a//b, b, a % b
x0, x1 = x1, x0-q*x1
y0, y1 = y1, y0-q*y1
return a, x0, y0
#
def modinv(a, mod=MOD):
g, x, y = xgcd(a, mod)
if g != 1:
raise Exception("moduler inverse does not exist")
else:
return x % mod
# combination
def combination_modinv(n, r, mod=MOD):
if n < 0 or r < 0 or n < r:
return 0
fact = [1]*(n+2)
fact_inv = [1]*(n+2)
for i in range(1, n+2):
fact[i] = (fact[i-1]*i) % mod
fact_inv[n+1] = pow(fact[n+1], mod-2, mod)
for i in range(n, -1, -1):
fact_inv[i] = (fact_inv[i+1]*(i+1)) % mod
return (fact[n]*fact_inv[r] % mod)*fact_inv[n-r] % mod
class BIT:
# N+1
def __init__(self, N):
self.size = N
self.bit = [0]*(N+1)
# i
def sum(self, i):
res = 0
while i > 0:
res += self.bit[i] # i
i -= -i & i # 10
return res
# ix
def add(self, i, x):
while i <= self.size:
self.bit[i] += x # ix
i += -i & i # 11
# N mod p = a, N mod q = b
# px + a = qy + b
# px - qy = b-a
# px = 1 mod q
def crp(a, p, b, q):
x = pow(p, -1, q)
x *= b-a
x %= q
return p*x + a
def Dijkstra(edges, num_node):
"""
[, ]
A, B, C, D, ... → 0, 1, 2, ... """
node = [float('inf')] * num_node #
node[0] = 0 # 0
node_name = [i for i in range(num_node)] # 0~
while len(node_name) > 0:
r = node_name[0]
#
for i in node_name:
if node[i] < node[r]:
r = i #
#
min_point = node_name.pop(node_name.index(r))
#
for factor in edges[min_point]:
goal = factor[0] #
cost = factor[1] #
#
if node[min_point] + cost < node[goal]:
node[goal] = node[min_point] + cost #
return node
#
def EulerTour(n, graph, root):
"""
(n: int, graph: List[List[int]], root: int) -> Tuple[List[int], List[int], List[int]]:
:param n: the number of vertex points
:param graph: 2D matrix of N vertices given by the edges
:param root: start node index
:return tour: order of visited vertex
:return in_time: first visiting time of each vertex
:return out_time: last visiting time of each vertex
example:
graph = [[] for _ in range(n)]
for _ in range(n):
a, b = map(int, input().split())
graph[a].append(b)
graph[b].append(a)
tour, in_time, out_time = EulerTour(n, graph, 0)
"""
parent = [-1] * n
stack = [~root, root] # postorder, preorder
curr_time = -1
tour = []
in_time = [-1] * n
out_time = [-1] * n
while stack:
curr_node = stack.pop()
curr_time += 1
if curr_node >= 0: # preorder
tour.append(curr_node)
if in_time[curr_node] == -1:
in_time[curr_node] = curr_time
for next_node in graph[curr_node]:
if next_node != parent[curr_node]:
parent[next_node] = curr_node
stack.append(~next_node)
stack.append(next_node)
elif curr_node < 0: # postorder
out_time[~curr_node] = curr_time
if parent[~curr_node] != -1:
tour.append(parent[~curr_node])
return tour, in_time, out_time
class UnionFind():
def __init__(self, n):
self.n = n
self.parents = [-1] * n
def find(self, x):
if self.parents[x] < 0:
return x
else:
self.parents[x] = self.find(self.parents[x])
return self.parents[x]
def union(self, x, y):
x = self.find(x)
y = self.find(y)
if x == y:
return
if self.parents[x] > self.parents[y]:
x, y = y, x
self.parents[x] += self.parents[y]
self.parents[y] = x
def size(self, x):
return -self.parents[self.find(x)]
def same(self, x, y):
return self.find(x) == self.find(y)
def members(self, x):
root = self.find(x)
return [i for i in range(self.n) if self.find(i) == root]
def roots(self):
return [i for i, x in enumerate(self.parents) if x < 0]
def group_count(self):
return len(self.roots())
def all_group_members(self):
group_members = collections.defaultdict(list)
for member in range(self.n):
group_members[self.find(member)].append(member)
return group_members
def __str__(self):
return '\n'.join(f'{r}: {m}' for r, m in self.all_group_members().items())
def make_kmp_table(t):
i = 2
j = 0
m = len(t)
tbl = [0] * (m + 1)
tbl[0] = -1
while i <= m:
if t[i - 1] == t[j]:
tbl[i] = j + 1
i += 1
j += 1
elif j > 0:
j = tbl[j]
else:
tbl[i] = 0
i += 1
return tbl
# ST
def kmp(s, t):
matched_indices = []
tbl = make_kmp_table(t)
i = 0
j = 0
n = len(s)
m = len(t)
while i + j < n:
if t[j] == s[i + j]:
j += 1
if j == m:
matched_indices.append(i)
i += j - tbl[j]
j = tbl[j]
else:
i += j - tbl[j]
if j > 0:
j = tbl[j]
return matched_indices
#
class SCC:
def __init__(self, n):
self.n = n
self.graph = [[] for _ in range(n)]
self.rev_graph = [[] for _ in range(n)]
self.labels = [-1] * n
self.lb_cnt = 0
def add_edge(self, v, nxt_v):
self.graph[v].append(nxt_v)
self.rev_graph[nxt_v].append(v)
def build(self):
self.post_order = []
self.used = [False] * self.n
for v in range(self.n):
if not self.used[v]:
self._dfs(v)
for v in reversed(self.post_order):
if self.labels[v] == -1:
self._rev_dfs(v)
self.lb_cnt += 1
def _dfs(self, v):
stack = [v, 0]
while stack:
v, idx = stack[-2:]
if not idx and self.used[v]:
stack.pop()
stack.pop()
else:
self.used[v] = True
if idx < len(self.graph[v]):
stack[-1] += 1
stack.append(self.graph[v][idx])
stack.append(0)
else:
stack.pop()
self.post_order.append(stack.pop())
def _rev_dfs(self, v):
stack = [v]
self.labels[v] = self.lb_cnt
while stack:
v = stack.pop()
for nxt_v in self.rev_graph[v]:
if self.labels[nxt_v] != -1:
continue
stack.append(nxt_v)
self.labels[nxt_v] = self.lb_cnt
def construct(self):
self.dag = [[] for i in range(self.lb_cnt)]
self.groups = [[] for i in range(self.lb_cnt)]
for v, lb in enumerate(self.labels):
for nxt_v in self.graph[v]:
nxt_lb = self.labels[nxt_v]
if lb == nxt_lb:
continue
self.dag[lb].append(nxt_lb)
self.groups[lb].append(v)
return self.dag, self.groups
class SegTree:
""" /
segfunc
min(x, y) float('inf')
max(x, y) -float('inf')
x + y 0
x * y 1
math.gcd(x, y) 0
segfunc :
add : kx
update : kx
query : [l,r)seg_func
"""
def __init__(self, init_val: list, ide_ele: int = 0):
n = len(init_val)
self.ide_ele = ide_ele
self.num = 1 << (n-1).bit_length()
self.tree = [ide_ele]*2*self.num
for i in range(n):
self.tree[self.num+i] = init_val[i]
for i in range(self.num-1, 0, -1):
self.tree[i] = self.segfunc(self.tree[2*i], self.tree[2*i+1])
def segfunc(x, y):
return x+y
def add(self, k, x):
k += self.num
self.tree[k] += x
while k > 1:
self.tree[k >> 1] = self.segfunc(self.tree[k], self.tree[k ^ 1])
k >>= 1
def update(self, k, x):
k += self.num
self.tree[k] = x
while k > 1:
self.tree[k >> 1] = self.segfunc(self.tree[k], self.tree[k ^ 1])
k >>= 1
def query(self, l, r):
res = self.ide_ele
l += self.num
r += self.num
while l < r:
if l & 1:
res = self.segfunc(res, self.tree[l])
l += 1
if r & 1:
res = self.segfunc(res, self.tree[r-1])
l >>= 1
r >>= 1
return res
class LazySegTree_RAQ:
""" /
seg_func :
add : [l,r)x
query : [l,r)seg_func
"""
def __init__(self, init_val, segfunc=None, ide_ele: int = 0):
n = len(init_val)
self.ide_ele = ide_ele
if segfunc is not None:
self.segfunc = segfunc
self.num = 1 << (n-1).bit_length()
self.tree = [ide_ele]*2*self.num
self.lazy = [0]*2*self.num
for i in range(n):
self.tree[self.num+i] = init_val[i]
for i in range(self.num-1, 0, -1):
self.tree[i] = self.segfunc(self.tree[2*i], self.tree[2*i+1])
def segfunc(x, y):
return x+y
def gindex(self, l, r):
l += self.num
r += self.num
lm = l >> (l & -l).bit_length()
rm = r >> (r & -r).bit_length()
while r > l:
if l <= lm:
yield l
if r <= rm:
yield r
r >>= 1
l >>= 1
while l:
yield l
l >>= 1
def propagates(self, *ids):
for i in reversed(ids):
v = self.lazy[i]
if v == 0:
continue
self.lazy[i] = 0
self.lazy[2*i] += v
self.lazy[2*i+1] += v
self.tree[2*i] += v
self.tree[2*i+1] += v
def add(self, l, r, x):
ids = self.gindex(l, r)
l += self.num
r += self.num
while l < r:
if l & 1:
self.lazy[l] += x
self.tree[l] += x
l += 1
if r & 1:
self.lazy[r-1] += x
self.tree[r-1] += x
r >>= 1
l >>= 1
for i in ids:
self.tree[i] = self.segfunc(self.tree[2*i], self.tree[2*i+1]) + self.lazy[i]
def query(self, l, r):
self.propagates(*self.gindex(l, r))
res = self.ide_ele
l += self.num
r += self.num
while l < r:
if l & 1:
res = self.segfunc(res, self.tree[l])
l += 1
if r & 1:
res = self.segfunc(res, self.tree[r-1])
l >>= 1
r >>= 1
return res
class LazySegTree_RUQ:
""" /
seg_func :
update : [l,r)x
query : [l,r)seg_func
"""
def __init__(self, init_val: list, segfunc=None, ide_ele: int = 0):
n = len(init_val)
self.ide_ele = ide_ele
self.num = 1 << (n-1).bit_length()
if segfunc is not None:
self.segfunc = segfunc
self.tree = [ide_ele]*2*self.num
self.lazy = [None]*2*self.num
for i in range(n):
self.tree[self.num+i] = init_val[i]
for i in range(self.num-1, 0, -1):
self.tree[i] = self.segfunc(self.tree[2*i], self.tree[2*i+1])
def segfunc(x, y):
return min(x, y)
def gindex(self, l, r):
l += self.num
r += self.num
lm = l >> (l & -l).bit_length()
rm = r >> (r & -r).bit_length()
while r > l:
if l <= lm:
yield l
if r <= rm:
yield r
r >>= 1
l >>= 1
while l:
yield l
l >>= 1
def propagates(self, *ids):
for i in reversed(ids):
v = self.lazy[i]
if v is None:
continue
self.lazy[i] = None
self.lazy[2*i] = v
self.lazy[2*i+1] = v
self.tree[2*i] = v
self.tree[2*i+1] = v
def update(self, l, r, x):
ids = self.gindex(l, r)
self.propagates(*self.gindex(l, r))
l += self.num
r += self.num
while l < r:
if l & 1:
self.lazy[l] = x
self.tree[l] = x
l += 1
if r & 1:
self.lazy[r-1] = x
self.tree[r-1] = x
r >>= 1
l >>= 1
for i in ids:
self.tree[i] = self.segfunc(self.tree[2*i], self.tree[2*i+1])
def query(self, l, r):
ids = self.gindex(l, r)
self.propagates(*self.gindex(l, r))
res = self.ide_ele
l += self.num
r += self.num
while l < r:
if l & 1:
res = self.segfunc(res, self.tree[l])
l += 1
if r & 1:
res = self.segfunc(res, self.tree[r-1])
l >>= 1
r >>= 1
return res
T = TypeVar('T')
class SortedSet(Generic[T]):
BUCKET_RATIO = 50
REBUILD_RATIO = 170
def _build(self, a=None) -> None:
"Evenly divide `a` into buckets."
if a is None:
a = list(self)
size = self.size = len(a)
bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO)))
self.a = [a[size * i // bucket_size: size * (i + 1) // bucket_size] for i in range(bucket_size)]
def __init__(self, a: Iterable[T] = []) -> None:
"Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)"
a = list(a)
if not all(a[i] < a[i + 1] for i in range(len(a) - 1)):
a = sorted(set(a))
self._build(a)
def __iter__(self) -> Iterator[T]:
for i in self.a:
for j in i:
yield j
def __reversed__(self) -> Iterator[T]:
for i in reversed(self.a):
for j in reversed(i):
yield j
def __len__(self) -> int:
return self.size
def __repr__(self) -> str:
return "SortedSet" + str(self.a)
def __str__(self) -> str:
s = str(list(self))
return "{" + s[1: len(s) - 1] + "}"
def _find_bucket(self, x: T) -> List[T]:
"Find the bucket which should contain x. self must not be empty."
for a in self.a:
if x <= a[-1]:
return a
return a
def __contains__(self, x: T) -> bool:
if self.size == 0:
return False
a = self._find_bucket(x)
i = bisect_left(a, x)
return i != len(a) and a[i] == x
def add(self, x: T) -> bool:
"Add an element and return True if added. / O(√N)"
if self.size == 0:
self.a = [[x]]
self.size = 1
return True
a = self._find_bucket(x)
i = bisect_left(a, x)
if i != len(a) and a[i] == x:
return False
a.insert(i, x)
self.size += 1
if len(a) > len(self.a) * self.REBUILD_RATIO:
self._build()
return True
def discard(self, x: T) -> bool:
"Remove an element and return True if removed. / O(√N)"
if self.size == 0:
return False
a = self._find_bucket(x)
i = bisect_left(a, x)
if i == len(a) or a[i] != x:
return False
a.pop(i)
self.size -= 1
if len(a) == 0:
self._build()
return True
def lt(self, x: T) -> Optional[T]:
"Find the largest element < x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] < x:
return a[bisect_left(a, x) - 1]
def le(self, x: T) -> Optional[T]:
"Find the largest element <= x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] <= x:
return a[bisect_right(a, x) - 1]
def gt(self, x: T) -> Optional[T]:
"Find the smallest element > x, or None if it doesn't exist."
for a in self.a:
if a[-1] > x:
return a[bisect_right(a, x)]
def ge(self, x: T) -> Optional[T]:
"Find the smallest element >= x, or None if it doesn't exist."
for a in self.a:
if a[-1] >= x:
return a[bisect_left(a, x)]
def __getitem__(self, x: int) -> T:
"Return the x-th element, or IndexError if it doesn't exist."
if x < 0:
x += self.size
if x < 0:
raise IndexError
for a in self.a:
if x < len(a):
return a[x]
x -= len(a)
raise IndexError
def index(self, x: T) -> int:
"Count the number of elements < x."
ans = 0
for a in self.a:
if a[-1] >= x:
return ans + bisect_left(a, x)
ans += len(a)
return ans
def index_right(self, x: T) -> int:
"Count the number of elements <= x."
ans = 0
for a in self.a:
if a[-1] > x:
return ans + bisect_right(a, x)
ans += len(a)
return ans
class SortedMultiset(Generic[T]):
BUCKET_RATIO = 50
REBUILD_RATIO = 170
def _build(self, a=None) -> None:
"Evenly divide `a` into buckets."
if a is None:
a = list(self)
size = self.size = len(a)
bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO)))
self.a = [a[size * i // bucket_size: size * (i + 1) // bucket_size] for i in range(bucket_size)]
def __init__(self, a: Iterable[T] = []) -> None:
"Make a new SortedMultiset from iterable. / O(N) if sorted / O(N log N)"
a = list(a)
if not all(a[i] <= a[i + 1] for i in range(len(a) - 1)):
a = sorted(a)
self._build(a)
def __iter__(self) -> Iterator[T]:
for i in self.a:
for j in i:
yield j
def __reversed__(self) -> Iterator[T]:
for i in reversed(self.a):
for j in reversed(i):
yield j
def __len__(self) -> int:
return self.size
def __repr__(self) -> str:
return "SortedMultiset" + str(self.a)
def __str__(self) -> str:
s = str(list(self))
return "{" + s[1: len(s) - 1] + "}"
def _find_bucket(self, x: T) -> List[T]:
"Find the bucket which should contain x. self must not be empty."
for a in self.a:
if x <= a[-1]:
return a
return a
def __contains__(self, x: T) -> bool:
if self.size == 0:
return False
a = self._find_bucket(x)
i = bisect_left(a, x)
return i != len(a) and a[i] == x
def count(self, x: T) -> int:
"Count the number of x."
return self.index_right(x) - self.index(x)
def add(self, x: T) -> None:
"Add an element. / O(√N)"
if self.size == 0:
self.a = [[x]]
self.size = 1
return
a = self._find_bucket(x)
insort(a, x)
self.size += 1
if len(a) > len(self.a) * self.REBUILD_RATIO:
self._build()
def discard(self, x: T) -> bool:
"Remove an element and return True if removed. / O(√N)"
if self.size == 0:
return False
a = self._find_bucket(x)
i = bisect_left(a, x)
if i == len(a) or a[i] != x:
return False
a.pop(i)
self.size -= 1
if len(a) == 0:
self._build()
return True
def lt(self, x: T) -> Optional[T]:
"Find the largest element < x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] < x:
return a[bisect_left(a, x) - 1]
def le(self, x: T) -> Optional[T]:
"Find the largest element <= x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] <= x:
return a[bisect_right(a, x) - 1]
def gt(self, x: T) -> Optional[T]:
"Find the smallest element > x, or None if it doesn't exist."
for a in self.a:
if a[-1] > x:
return a[bisect_right(a, x)]
def ge(self, x: T) -> Optional[T]:
"Find the smallest element >= x, or None if it doesn't exist."
for a in self.a:
if a[-1] >= x:
return a[bisect_left(a, x)]
def __getitem__(self, x: int) -> T:
"Return the x-th element, or IndexError if it doesn't exist."
if x < 0:
x += self.size
if x < 0:
raise IndexError
for a in self.a:
if x < len(a):
return a[x]
x -= len(a)
raise IndexError
def index(self, x: T) -> int:
"Count the number of elements < x."
ans = 0
for a in self.a:
if a[-1] >= x:
return ans + bisect_left(a, x)
ans += len(a)
return ans
def index_right(self, x: T) -> int:
"Count the number of elements <= x."
ans = 0
for a in self.a:
if a[-1] > x:
return ans + bisect_right(a, x)
ans += len(a)
return ans
# o(NlogN)
def inversion_num(L: list):
max_N = max(L)
bit = BIT(max_N)
cnt = 0
for i, l in enumerate(L):
cnt += i-bit.sum(l)
bit.add(l, 1)
return cnt
#
def make_divisors(n):
lower_divisors, upper_divisors = [], []
i = 1
while i*i <= n:
if n % i == 0:
lower_divisors.append(i)
if i != n // i:
upper_divisors.append(n//i)
i += 1
return lower_divisors + upper_divisors[::-1]
# N
# O(logN)
def prime_list(N):
H = [False] * (N + 1)
primes = []
for i in range(2, N + 1):
if H[i]:
continue
primes.append(i)
for j in range(i, N + 1, i):
H[j] = True
return primes
class ModInt:
def __init__(self, x, mod=998244353):
self.x = x % mod
self.mod = mod
def __str__(self):
return str(self.x)
__repr__ = __str__
def __add__(self, other):
return (
ModInt(self.x + other.x) if isinstance(other, ModInt) else
ModInt(self.x + other)
)
def __sub__(self, other):
return (
ModInt(self.x - other.x) if isinstance(other, ModInt) else
ModInt(self.x - other)
)
def __mul__(self, other):
return (
ModInt(self.x*other.x) if isinstance(other, ModInt) else
ModInt(self.x*other)
)
def __truediv__(self, other):
return (
ModInt(
self.x*pow(other.x, self.mod-2, self.mod)
) if isinstance(other, ModInt) else
ModInt(self.x*pow(other, self.mod-2, self.mod))
)
def __pow__(self, other):
return (
ModInt(pow(self.x, other.x, self.mod)) if isinstance(other, ModInt) else
ModInt(pow(self.x, other, self.mod))
)
__radd__ = __add__
def __rsub__(self, other):
return (
ModInt(other.x-self.x) if isinstance(other, ModInt) else
ModInt(other-self.x)
)
__rmul__ = __mul__
def __rtruediv__(self, other):
return (
ModInt(
other.x * pow(self.x, self.mod-2, self.mod)
) if isinstance(other, ModInt) else
ModInt(other * pow(self.x, self.mod-2, self.mod))
)
def __rpow__(self, other):
return (
ModInt(pow(other.x, self.x, self.mod)) if isinstance(other, ModInt) else
ModInt(pow(other, self.x, self.mod))
)
def main():
N, Q = MI()
P = LI()
uf = UnionFind(N+1)
for i, p in enumerate(P, 1):
if p == -1:
continue
uf.union(i, p)
ans = []
for _ in range(Q):
A, B = MI()
ans.append("Yes" if uf.same(A, B) else "No")
print(*ans, sep="\n")
if __name__ == "__main__":
main()
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0