結果
問題 | No.2318 Phys Bone Maker |
ユーザー | 👑 rin204 |
提出日時 | 2023-05-27 00:08:44 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 346 ms / 3,000 ms |
コード長 | 18,632 bytes |
コンパイル時間 | 3,937 ms |
コンパイル使用メモリ | 267,624 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-06-07 09:40:10 |
合計ジャッジ時間 | 6,716 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 346 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 2 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 1 ms
5,376 KB |
testcase_17 | AC | 2 ms
5,376 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 2 ms
5,376 KB |
testcase_21 | AC | 2 ms
5,376 KB |
testcase_22 | AC | 2 ms
5,376 KB |
testcase_23 | AC | 2 ms
5,376 KB |
testcase_24 | AC | 1 ms
5,376 KB |
testcase_25 | AC | 1 ms
5,376 KB |
testcase_26 | AC | 2 ms
5,376 KB |
testcase_27 | AC | 2 ms
5,376 KB |
testcase_28 | AC | 2 ms
5,376 KB |
testcase_29 | AC | 2 ms
5,376 KB |
testcase_30 | AC | 2 ms
5,376 KB |
testcase_31 | AC | 1 ms
5,376 KB |
testcase_32 | AC | 2 ms
5,376 KB |
testcase_33 | AC | 1 ms
5,376 KB |
testcase_34 | AC | 2 ms
5,376 KB |
testcase_35 | AC | 39 ms
5,376 KB |
testcase_36 | AC | 165 ms
5,376 KB |
testcase_37 | AC | 165 ms
5,376 KB |
testcase_38 | AC | 172 ms
5,376 KB |
testcase_39 | AC | 250 ms
5,376 KB |
testcase_40 | AC | 251 ms
5,376 KB |
testcase_41 | AC | 287 ms
5,376 KB |
testcase_42 | AC | 292 ms
5,376 KB |
testcase_43 | AC | 2 ms
5,376 KB |
testcase_44 | AC | 33 ms
5,376 KB |
testcase_45 | AC | 31 ms
5,376 KB |
testcase_46 | AC | 292 ms
5,376 KB |
testcase_47 | AC | 2 ms
5,376 KB |
ソースコード
// start A.cpp // #pragma GCC target("avx2") // #pragma GCC optimize("O3") // #pragma GCC optimize("unroll-loops") #include <bits/stdc++.h> using namespace std; using ll = long long; using ull = unsigned long long; template <class T> using pq = priority_queue<T>; template <class T> using qp = priority_queue<T, vector<T>, greater<T>>; #define vec(T, A, ...) vector<T> A(__VA_ARGS__); #define vvec(T, A, h, ...) vector<vector<T>> A(h, vector<T>(__VA_ARGS__)); #define vvvec(T, A, h1, h2, ...) vector<vector<vector<T>>> A(h1, vector<vector<T>>(h2, vector<T>(__VA_ARGS__))); #ifndef RIN__LOCAL #define endl "\n" #endif #define spa ' ' #define len(A) A.size() #define all(A) begin(A), end(A) #define fori1(a) for (ll _ = 0; _ < (a); _++) #define fori2(i, a) for (ll i = 0; i < (a); i++) #define fori3(i, a, b) for (ll i = (a); i < (b); i++) #define fori4(i, a, b, c) for (ll i = (a); ((c) > 0 || i > (b)) && ((c) < 0 || i < (b)); i += (c)) #define overload4(a, b, c, d, e, ...) e #define fori(...) overload4(__VA_ARGS__, fori4, fori3, fori2, fori1)(__VA_ARGS__) vector<char> stoc(string &S) { int n = S.size(); vector<char> ret(n); for (int i = 0; i < n; i++) ret[i] = S[i]; return ret; } #define INT(...) \ int __VA_ARGS__; \ inp(__VA_ARGS__); #define LL(...) \ ll __VA_ARGS__; \ inp(__VA_ARGS__); #define STRING(...) \ string __VA_ARGS__; \ inp(__VA_ARGS__); #define CHAR(...) \ char __VA_ARGS__; \ inp(__VA_ARGS__); #define VEC(T, A, n) \ vector<T> A(n); \ inp(A); #define VVEC(T, A, n, m) \ vector<vector<T>> A(n, vector<T>(m)); \ inp(A); const ll MOD1 = 1000000007; const ll MOD9 = 998244353; template <class T> auto min(const T &a) { return *min_element(all(a)); } template <class T> auto max(const T &a) { return *max_element(all(a)); } template <class T, class S> auto clamp(T &a, const S &l, const S &r) { return (a > r ? r : a < l ? l : a); } template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } template <class T, class S> inline bool chclamp(T &a, const S &l, const S &r) { auto b = clamp(a, l, r); return (a != b ? a = b, 1 : 0); } void FLUSH() { cout << flush; } void print() { cout << endl; } template <class Head, class... Tail> void print(Head &&head, Tail &&... tail) { cout << head; if (sizeof...(Tail)) cout << spa; print(forward<Tail>(tail)...); } template <typename T> void print(vector<T> &A) { int n = A.size(); for (int i = 0; i < n; i++) { cout << A[i]; if (i != n - 1) cout << ' '; } cout << endl; } template <typename T> void print(vector<vector<T>> &A) { for (auto &row : A) print(row); } template <typename T, typename S> void print(pair<T, S> &A) { cout << A.first << spa << A.second << endl; } template <typename T, typename S> void print(vector<pair<T, S>> &A) { for (auto &row : A) print(row); } template <typename T, typename S> void prisep(vector<T> &A, S sep) { int n = A.size(); for (int i = 0; i < n; i++) { cout << A[i]; if (i != n - 1) cout << sep; } cout << endl; } template <typename T, typename S> void priend(T A, S end) { cout << A << end; } template <typename T> void priend(T A) { priend(A, spa); } template <class... T> void inp(T &... a) { (cin >> ... >> a); } template <typename T> void inp(vector<T> &A) { for (auto &a : A) cin >> a; } template <typename T> void inp(vector<vector<T>> &A) { for (auto &row : A) inp(row); } template <typename T, typename S> void inp(pair<T, S> &A) { inp(A.first, A.second); } template <typename T, typename S> void inp(vector<pair<T, S>> &A) { for (auto &row : A) inp(row.first, row.second); } template <typename T> T sum(vector<T> &A) { T tot = 0; for (auto a : A) tot += a; return tot; } template <typename T> vector<T> compression(vector<T> X) { sort(all(X)); X.erase(unique(all(X)), X.end()); return X; } vector<vector<int>> read_edges(int n, int m, bool direct = false, int indexed = 1) { vector<vector<int>> edges(n, vector<int>()); for (int i = 0; i < m; i++) { INT(u, v); u -= indexed; v -= indexed; edges[u].push_back(v); if (!direct) edges[v].push_back(u); } return edges; } vector<vector<int>> read_tree(int n, int indexed = 1) { return read_edges(n, n - 1, false, indexed); } template <typename T> vector<vector<pair<int, T>>> read_wedges(int n, int m, bool direct = false, int indexed = 1) { vector<vector<pair<int, T>>> edges(n, vector<pair<int, T>>()); for (int i = 0; i < m; i++) { INT(u, v); T w; inp(w); u -= indexed; v -= indexed; edges[u].push_back({v, w}); if (!direct) edges[v].push_back({u, w}); } return edges; } template <typename T> vector<vector<pair<int, T>>> read_wtree(int n, int indexed = 1) { return read_wedges<T>(n, n - 1, false, indexed); } inline bool yes(bool f = true) { cout << (f ? "yes" : "no") << endl; return f; } inline bool Yes(bool f = true) { cout << (f ? "Yes" : "No") << endl; return f; } inline bool YES(bool f = true) { cout << (f ? "YES" : "NO") << endl; return f; } inline bool no(bool f = false) { cout << (!f ? "yes" : "no") << endl; return f; } inline bool No(bool f = false) { cout << (!f ? "Yes" : "No") << endl; return f; } inline bool NO(bool f = false) { cout << (!f ? "YES" : "NO") << endl; return f; } // start math/divisors.hpp // start math/pollard_rho.hpp // start math/millerRabin.hpp // start math/modpow.hpp template <typename T> T modpow(T a, long long b, T MOD) { T ret = 1; while (b > 0) { if (b & 1) { ret *= a; ret %= MOD; } a *= a; a %= MOD; b >>= 1; } return ret; } // end math/modpow.hpp // restart math/millerRabin.hpp bool isPrime(long long n) { if (n <= 1) return false; else if (n == 2) return true; else if (n % 2 == 0) return false; long long A[7] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022}; long long s = 0; long long d = n - 1; while (d % 2 == 0) { d /= 2; s++; } for (auto a : A) { if (a % n == 0) return true; long long x = modpow<__int128_t>(a, d, n); if (x != 1) { bool ng = true; for (int i = 0; i < s; i++) { if (x == n - 1) { ng = false; break; }; x = __int128_t(x) * x % n; } if (ng) return false; } } return true; } // end math/millerRabin.hpp // restart math/pollard_rho.hpp long long pollard(long long N) { if (N % 2 == 0) return 2; if (isPrime(N)) return N; long long step = 0; auto f = [&](long long x) -> long long { return (__int128_t(x) * x + step) % N; }; while (true) { ++step; long long x = step, y = f(x); while (true) { long long p = gcd(y - x + N, N); if (p == 0 || p == N) break; if (p != 1) return p; x = f(x); y = f(f(y)); } } } vector<long long> primefact(long long N) { if (N == 1) return {}; long long p = pollard(N); if (p == N) return {p}; vector<long long> left = primefact(p); vector<long long> right = primefact(N / p); left.insert(left.end(), right.begin(), right.end()); sort(left.begin(), left.end()); return left; } // end math/pollard_rho.hpp // restart math/divisors.hpp #include <bits/stdc++.h> using namespace std; vector<long long> divisors(long long n) { if (n == 1) return {1}; auto primes = primefact(n); vector<long long> ret = {1}; primes.push_back(0); long long bef = primes[0]; int row = 0; for (auto p : primes) { if (p == bef) row++; else { int l = ret.size(); for (int i = 0; i < l; i++) { long long d = ret[i]; for (int j = 0; j < row; j++) { d *= bef; ret.push_back(d); } } bef = p; row = 1; } } sort(ret.begin(), ret.end()); return ret; } // end math/divisors.hpp // restart A.cpp // start other/Modint.hpp template <int MOD> struct Modint { int x; Modint() : x(0) {} Modint(int64_t y) { if (y >= 0) x = y % MOD; else x = (y % MOD + MOD) % MOD; } Modint &operator+=(const Modint &p) { x += p.x; if (x >= MOD) x -= MOD; return *this; } Modint &operator-=(const Modint &p) { x -= p.x; if (x < 0) x += MOD; return *this; } Modint &operator*=(const Modint &p) { x = int(1LL * x * p.x % MOD); return *this; } Modint &operator/=(const Modint &p) { *this *= p.inverse(); return *this; } Modint &operator%=(const Modint &p) { assert(p.x == 0); return *this; } Modint operator-() const { return Modint(-x); } Modint &operator++() { x++; if (x == MOD) x = 0; return *this; } Modint &operator--() { if (x == 0) x = MOD; x--; return *this; } Modint operator++(int) { Modint result = *this; ++*this; return result; } Modint operator--(int) { Modint result = *this; --*this; return result; } friend Modint operator+(const Modint &lhs, const Modint &rhs) { return Modint(lhs) += rhs; } friend Modint operator-(const Modint &lhs, const Modint &rhs) { return Modint(lhs) -= rhs; } friend Modint operator*(const Modint &lhs, const Modint &rhs) { return Modint(lhs) *= rhs; } friend Modint operator/(const Modint &lhs, const Modint &rhs) { return Modint(lhs) /= rhs; } friend Modint operator%(const Modint &lhs, const Modint &rhs) { assert(rhs.x == 0); return Modint(lhs); } bool operator==(const Modint &p) const { return x == p.x; } bool operator!=(const Modint &p) const { return x != p.x; } bool operator<(const Modint &rhs) const { return x < rhs.x; } bool operator<=(const Modint &rhs) const { return x <= rhs.x; } bool operator>(const Modint &rhs) const { return x > rhs.x; } bool operator>=(const Modint &rhs) const { return x >= rhs.x; } Modint inverse() const { int a = x, b = MOD, u = 1, v = 0, t; while (b > 0) { t = a / b; a -= t * b; u -= t * v; swap(a, b); swap(u, v); } return Modint(u); } Modint pow(int64_t k) const { Modint ret(1); Modint y(x); while (k > 0) { if (k & 1) ret *= y; y *= y; k >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const Modint &p) { return os << p.x; } friend istream &operator>>(istream &is, Modint &p) { int64_t y; is >> y; p = Modint<MOD>(y); return (is); } static int get_mod() { return MOD; } }; struct Arbitrary_Modint { int x; static int MOD; static void set_mod(int mod) { MOD = mod; } Arbitrary_Modint() : x(0) {} Arbitrary_Modint(int64_t y) { if (y >= 0) x = y % MOD; else x = (y % MOD + MOD) % MOD; } Arbitrary_Modint &operator+=(const Arbitrary_Modint &p) { x += p.x; if (x >= MOD) x -= MOD; return *this; } Arbitrary_Modint &operator-=(const Arbitrary_Modint &p) { x -= p.x; if (x < 0) x += MOD; return *this; } Arbitrary_Modint &operator*=(const Arbitrary_Modint &p) { x = int(1LL * x * p.x % MOD); return *this; } Arbitrary_Modint &operator/=(const Arbitrary_Modint &p) { *this *= p.inverse(); return *this; } Arbitrary_Modint &operator%=(const Arbitrary_Modint &p) { assert(p.x == 0); return *this; } Arbitrary_Modint operator-() const { return Arbitrary_Modint(-x); } Arbitrary_Modint &operator++() { x++; if (x == MOD) x = 0; return *this; } Arbitrary_Modint &operator--() { if (x == 0) x = MOD; x--; return *this; } Arbitrary_Modint operator++(int) { Arbitrary_Modint result = *this; ++*this; return result; } Arbitrary_Modint operator--(int) { Arbitrary_Modint result = *this; --*this; return result; } friend Arbitrary_Modint operator+(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) { return Arbitrary_Modint(lhs) += rhs; } friend Arbitrary_Modint operator-(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) { return Arbitrary_Modint(lhs) -= rhs; } friend Arbitrary_Modint operator*(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) { return Arbitrary_Modint(lhs) *= rhs; } friend Arbitrary_Modint operator/(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) { return Arbitrary_Modint(lhs) /= rhs; } friend Arbitrary_Modint operator%(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) { assert(rhs.x == 0); return Arbitrary_Modint(lhs); } bool operator==(const Arbitrary_Modint &p) const { return x == p.x; } bool operator!=(const Arbitrary_Modint &p) const { return x != p.x; } bool operator<(const Arbitrary_Modint &rhs) { return x < rhs.x; } bool operator<=(const Arbitrary_Modint &rhs) { return x <= rhs.x; } bool operator>(const Arbitrary_Modint &rhs) { return x > rhs.x; } bool operator>=(const Arbitrary_Modint &rhs) { return x >= rhs.x; } Arbitrary_Modint inverse() const { int a = x, b = MOD, u = 1, v = 0, t; while (b > 0) { t = a / b; a -= t * b; u -= t * v; swap(a, b); swap(u, v); } return Arbitrary_Modint(u); } Arbitrary_Modint pow(int64_t k) const { Arbitrary_Modint ret(1); Arbitrary_Modint y(x); while (k > 0) { if (k & 1) ret *= y; y *= y; k >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const Arbitrary_Modint &p) { return os << p.x; } friend istream &operator>>(istream &is, Arbitrary_Modint &p) { int64_t y; is >> y; p = Arbitrary_Modint(y); return (is); } static int get_mod() { return MOD; } }; int Arbitrary_Modint::MOD = 998244353; using modint9 = Modint<998244353>; using modint1 = Modint<1000000007>; using modint = Arbitrary_Modint; // end other/Modint.hpp // restart A.cpp using mint = modint9; void solve() { LL(n); auto divs = divisors(n); auto primes = compression(primefact(n)); int ld = len(divs); int lp = len(primes); vvec(int, cnt, ld, lp, 0); fori(i, ld) { ll d = divs[i]; fori(j, lp) { while (d % primes[j] == 0) { d /= primes[j]; cnt[i][j]++; } } } vec(mint, dp, ld, 0); dp[0] = 1; fori(i, ld) { fori(j, i + 1, ld) { if (divs[j] % divs[i] != 0) continue; mint times = 1; fori(k, lp) { if (cnt[i][k] == cnt[j][k]) times *= cnt[i][k] + 1; else if (cnt[i][k] > cnt[j][k]) { times = 0; break; } } dp[j] += dp[i] * times; } } print(dp.back()); } int main() { cin.tie(0)->sync_with_stdio(0); // cout << fixed << setprecision(12); int t; t = 1; // cin >> t; while (t--) solve(); return 0; } // end A.cpp