結果

問題 No.2318 Phys Bone Maker
ユーザー 👑 rin204rin204
提出日時 2023-05-27 00:08:44
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 346 ms / 3,000 ms
コード長 18,632 bytes
コンパイル時間 3,937 ms
コンパイル使用メモリ 267,624 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-06-07 09:40:10
合計ジャッジ時間 6,716 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 346 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 AC 2 ms
5,376 KB
testcase_12 AC 2 ms
5,376 KB
testcase_13 AC 2 ms
5,376 KB
testcase_14 AC 2 ms
5,376 KB
testcase_15 AC 2 ms
5,376 KB
testcase_16 AC 1 ms
5,376 KB
testcase_17 AC 2 ms
5,376 KB
testcase_18 AC 2 ms
5,376 KB
testcase_19 AC 2 ms
5,376 KB
testcase_20 AC 2 ms
5,376 KB
testcase_21 AC 2 ms
5,376 KB
testcase_22 AC 2 ms
5,376 KB
testcase_23 AC 2 ms
5,376 KB
testcase_24 AC 1 ms
5,376 KB
testcase_25 AC 1 ms
5,376 KB
testcase_26 AC 2 ms
5,376 KB
testcase_27 AC 2 ms
5,376 KB
testcase_28 AC 2 ms
5,376 KB
testcase_29 AC 2 ms
5,376 KB
testcase_30 AC 2 ms
5,376 KB
testcase_31 AC 1 ms
5,376 KB
testcase_32 AC 2 ms
5,376 KB
testcase_33 AC 1 ms
5,376 KB
testcase_34 AC 2 ms
5,376 KB
testcase_35 AC 39 ms
5,376 KB
testcase_36 AC 165 ms
5,376 KB
testcase_37 AC 165 ms
5,376 KB
testcase_38 AC 172 ms
5,376 KB
testcase_39 AC 250 ms
5,376 KB
testcase_40 AC 251 ms
5,376 KB
testcase_41 AC 287 ms
5,376 KB
testcase_42 AC 292 ms
5,376 KB
testcase_43 AC 2 ms
5,376 KB
testcase_44 AC 33 ms
5,376 KB
testcase_45 AC 31 ms
5,376 KB
testcase_46 AC 292 ms
5,376 KB
testcase_47 AC 2 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// start A.cpp
// #pragma GCC target("avx2")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;

using ll  = long long;
using ull = unsigned long long;
template <class T>
using pq = priority_queue<T>;
template <class T>
using qp = priority_queue<T, vector<T>, greater<T>>;
#define vec(T, A, ...) vector<T> A(__VA_ARGS__);
#define vvec(T, A, h, ...) vector<vector<T>> A(h, vector<T>(__VA_ARGS__));
#define vvvec(T, A, h1, h2, ...) vector<vector<vector<T>>> A(h1, vector<vector<T>>(h2, vector<T>(__VA_ARGS__)));

#ifndef RIN__LOCAL
#define endl "\n"
#endif
#define spa ' '
#define len(A) A.size()
#define all(A) begin(A), end(A)

#define fori1(a) for (ll _ = 0; _ < (a); _++)
#define fori2(i, a) for (ll i = 0; i < (a); i++)
#define fori3(i, a, b) for (ll i = (a); i < (b); i++)
#define fori4(i, a, b, c) for (ll i = (a); ((c) > 0 || i > (b)) && ((c) < 0 || i < (b)); i += (c))
#define overload4(a, b, c, d, e, ...) e
#define fori(...) overload4(__VA_ARGS__, fori4, fori3, fori2, fori1)(__VA_ARGS__)

vector<char> stoc(string &S) {
    int n = S.size();
    vector<char> ret(n);
    for (int i = 0; i < n; i++) ret[i] = S[i];
    return ret;
}

#define INT(...)                                                                                                                                                                                       \
    int __VA_ARGS__;                                                                                                                                                                                   \
    inp(__VA_ARGS__);
#define LL(...)                                                                                                                                                                                        \
    ll __VA_ARGS__;                                                                                                                                                                                    \
    inp(__VA_ARGS__);
#define STRING(...)                                                                                                                                                                                    \
    string __VA_ARGS__;                                                                                                                                                                                \
    inp(__VA_ARGS__);
#define CHAR(...)                                                                                                                                                                                      \
    char __VA_ARGS__;                                                                                                                                                                                  \
    inp(__VA_ARGS__);
#define VEC(T, A, n)                                                                                                                                                                                   \
    vector<T> A(n);                                                                                                                                                                                    \
    inp(A);
#define VVEC(T, A, n, m)                                                                                                                                                                               \
    vector<vector<T>> A(n, vector<T>(m));                                                                                                                                                              \
    inp(A);

const ll MOD1 = 1000000007;
const ll MOD9 = 998244353;

template <class T>
auto min(const T &a) {
    return *min_element(all(a));
}
template <class T>
auto max(const T &a) {
    return *max_element(all(a));
}
template <class T, class S>
auto clamp(T &a, const S &l, const S &r) {
    return (a > r ? r : a < l ? l : a);
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
    return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
    return (a > b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chclamp(T &a, const S &l, const S &r) {
    auto b = clamp(a, l, r);
    return (a != b ? a = b, 1 : 0);
}

void FLUSH() {
    cout << flush;
}
void print() {
    cout << endl;
}
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
    cout << head;
    if (sizeof...(Tail)) cout << spa;
    print(forward<Tail>(tail)...);
}
template <typename T>
void print(vector<T> &A) {
    int n = A.size();
    for (int i = 0; i < n; i++) {
        cout << A[i];
        if (i != n - 1) cout << ' ';
    }
    cout << endl;
}
template <typename T>
void print(vector<vector<T>> &A) {
    for (auto &row : A) print(row);
}
template <typename T, typename S>
void print(pair<T, S> &A) {
    cout << A.first << spa << A.second << endl;
}
template <typename T, typename S>
void print(vector<pair<T, S>> &A) {
    for (auto &row : A) print(row);
}
template <typename T, typename S>
void prisep(vector<T> &A, S sep) {
    int n = A.size();
    for (int i = 0; i < n; i++) {
        cout << A[i];
        if (i != n - 1) cout << sep;
    }
    cout << endl;
}
template <typename T, typename S>
void priend(T A, S end) {
    cout << A << end;
}
template <typename T>
void priend(T A) {
    priend(A, spa);
}
template <class... T>
void inp(T &... a) {
    (cin >> ... >> a);
}
template <typename T>
void inp(vector<T> &A) {
    for (auto &a : A) cin >> a;
}
template <typename T>
void inp(vector<vector<T>> &A) {
    for (auto &row : A) inp(row);
}
template <typename T, typename S>
void inp(pair<T, S> &A) {
    inp(A.first, A.second);
}
template <typename T, typename S>
void inp(vector<pair<T, S>> &A) {
    for (auto &row : A) inp(row.first, row.second);
}

template <typename T>
T sum(vector<T> &A) {
    T tot = 0;
    for (auto a : A) tot += a;
    return tot;
}

template <typename T>
vector<T> compression(vector<T> X) {
    sort(all(X));
    X.erase(unique(all(X)), X.end());
    return X;
}

vector<vector<int>> read_edges(int n, int m, bool direct = false, int indexed = 1) {
    vector<vector<int>> edges(n, vector<int>());
    for (int i = 0; i < m; i++) {
        INT(u, v);
        u -= indexed;
        v -= indexed;
        edges[u].push_back(v);
        if (!direct) edges[v].push_back(u);
    }
    return edges;
}
vector<vector<int>> read_tree(int n, int indexed = 1) {
    return read_edges(n, n - 1, false, indexed);
}
template <typename T>
vector<vector<pair<int, T>>> read_wedges(int n, int m, bool direct = false, int indexed = 1) {
    vector<vector<pair<int, T>>> edges(n, vector<pair<int, T>>());
    for (int i = 0; i < m; i++) {
        INT(u, v);
        T w;
        inp(w);
        u -= indexed;
        v -= indexed;
        edges[u].push_back({v, w});
        if (!direct) edges[v].push_back({u, w});
    }
    return edges;
}
template <typename T>
vector<vector<pair<int, T>>> read_wtree(int n, int indexed = 1) {
    return read_wedges<T>(n, n - 1, false, indexed);
}

inline bool yes(bool f = true) {
    cout << (f ? "yes" : "no") << endl;
    return f;
}
inline bool Yes(bool f = true) {
    cout << (f ? "Yes" : "No") << endl;
    return f;
}
inline bool YES(bool f = true) {
    cout << (f ? "YES" : "NO") << endl;
    return f;
}

inline bool no(bool f = false) {
    cout << (!f ? "yes" : "no") << endl;
    return f;
}
inline bool No(bool f = false) {
    cout << (!f ? "Yes" : "No") << endl;
    return f;
}
inline bool NO(bool f = false) {
    cout << (!f ? "YES" : "NO") << endl;
    return f;
}

// start math/divisors.hpp
// start math/pollard_rho.hpp

// start math/millerRabin.hpp
// start math/modpow.hpp

template <typename T>
T modpow(T a, long long b, T MOD) {
    T ret = 1;
    while (b > 0) {
        if (b & 1) {
            ret *= a;
            ret %= MOD;
        }
        a *= a;
        a %= MOD;
        b >>= 1;
    }
    return ret;
}

// end math/modpow.hpp
// restart math/millerRabin.hpp

bool isPrime(long long n) {
    if (n <= 1)
        return false;
    else if (n == 2)
        return true;
    else if (n % 2 == 0)
        return false;

    long long A[7] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};
    long long s    = 0;
    long long d    = n - 1;
    while (d % 2 == 0) {
        d /= 2;
        s++;
    }

    for (auto a : A) {
        if (a % n == 0) return true;
        long long x = modpow<__int128_t>(a, d, n);
        if (x != 1) {
            bool ng = true;
            for (int i = 0; i < s; i++) {
                if (x == n - 1) {
                    ng = false;
                    break;
                };
                x = __int128_t(x) * x % n;
            }
            if (ng) return false;
        }
    }
    return true;
}
// end math/millerRabin.hpp
// restart math/pollard_rho.hpp

long long pollard(long long N) {
    if (N % 2 == 0) return 2;
    if (isPrime(N)) return N;

    long long step = 0;
    auto f         = [&](long long x) -> long long { return (__int128_t(x) * x + step) % N; };
    while (true) {
        ++step;
        long long x = step, y = f(x);
        while (true) {
            long long p = gcd(y - x + N, N);
            if (p == 0 || p == N) break;
            if (p != 1) return p;
            x = f(x);
            y = f(f(y));
        }
    }
}

vector<long long> primefact(long long N) {
    if (N == 1) return {};
    long long p = pollard(N);
    if (p == N) return {p};
    vector<long long> left  = primefact(p);
    vector<long long> right = primefact(N / p);
    left.insert(left.end(), right.begin(), right.end());
    sort(left.begin(), left.end());
    return left;
}
// end math/pollard_rho.hpp
// restart math/divisors.hpp

#include <bits/stdc++.h>
using namespace std;

vector<long long> divisors(long long n) {
    if (n == 1) return {1};
    auto primes           = primefact(n);
    vector<long long> ret = {1};
    primes.push_back(0);
    long long bef = primes[0];
    int row       = 0;
    for (auto p : primes) {
        if (p == bef)
            row++;
        else {
            int l = ret.size();
            for (int i = 0; i < l; i++) {
                long long d = ret[i];
                for (int j = 0; j < row; j++) {
                    d *= bef;
                    ret.push_back(d);
                }
            }
            bef = p;
            row = 1;
        }
    }
    sort(ret.begin(), ret.end());
    return ret;
}
// end math/divisors.hpp
// restart A.cpp
// start other/Modint.hpp

template <int MOD>
struct Modint {
    int x;
    Modint() : x(0) {}
    Modint(int64_t y) {
        if (y >= 0)
            x = y % MOD;
        else
            x = (y % MOD + MOD) % MOD;
    }

    Modint &operator+=(const Modint &p) {
        x += p.x;
        if (x >= MOD) x -= MOD;
        return *this;
    }

    Modint &operator-=(const Modint &p) {
        x -= p.x;
        if (x < 0) x += MOD;
        return *this;
    }

    Modint &operator*=(const Modint &p) {
        x = int(1LL * x * p.x % MOD);
        return *this;
    }

    Modint &operator/=(const Modint &p) {
        *this *= p.inverse();
        return *this;
    }

    Modint &operator%=(const Modint &p) {
        assert(p.x == 0);
        return *this;
    }

    Modint operator-() const {
        return Modint(-x);
    }

    Modint &operator++() {
        x++;
        if (x == MOD) x = 0;
        return *this;
    }

    Modint &operator--() {
        if (x == 0) x = MOD;
        x--;
        return *this;
    }

    Modint operator++(int) {
        Modint result = *this;
        ++*this;
        return result;
    }

    Modint operator--(int) {
        Modint result = *this;
        --*this;
        return result;
    }

    friend Modint operator+(const Modint &lhs, const Modint &rhs) {
        return Modint(lhs) += rhs;
    }

    friend Modint operator-(const Modint &lhs, const Modint &rhs) {
        return Modint(lhs) -= rhs;
    }

    friend Modint operator*(const Modint &lhs, const Modint &rhs) {
        return Modint(lhs) *= rhs;
    }

    friend Modint operator/(const Modint &lhs, const Modint &rhs) {
        return Modint(lhs) /= rhs;
    }

    friend Modint operator%(const Modint &lhs, const Modint &rhs) {
        assert(rhs.x == 0);
        return Modint(lhs);
    }

    bool operator==(const Modint &p) const {
        return x == p.x;
    }

    bool operator!=(const Modint &p) const {
        return x != p.x;
    }

    bool operator<(const Modint &rhs) const {
        return x < rhs.x;
    }

    bool operator<=(const Modint &rhs) const {
        return x <= rhs.x;
    }

    bool operator>(const Modint &rhs) const {
        return x > rhs.x;
    }

    bool operator>=(const Modint &rhs) const {
        return x >= rhs.x;
    }

    Modint inverse() const {
        int a = x, b = MOD, u = 1, v = 0, t;
        while (b > 0) {
            t = a / b;
            a -= t * b;
            u -= t * v;
            swap(a, b);
            swap(u, v);
        }
        return Modint(u);
    }

    Modint pow(int64_t k) const {
        Modint ret(1);
        Modint y(x);
        while (k > 0) {
            if (k & 1) ret *= y;
            y *= y;
            k >>= 1;
        }
        return ret;
    }

    friend ostream &operator<<(ostream &os, const Modint &p) {
        return os << p.x;
    }

    friend istream &operator>>(istream &is, Modint &p) {
        int64_t y;
        is >> y;
        p = Modint<MOD>(y);
        return (is);
    }

    static int get_mod() {
        return MOD;
    }
};

struct Arbitrary_Modint {
    int x;
    static int MOD;

    static void set_mod(int mod) {
        MOD = mod;
    }

    Arbitrary_Modint() : x(0) {}
    Arbitrary_Modint(int64_t y) {
        if (y >= 0)
            x = y % MOD;
        else
            x = (y % MOD + MOD) % MOD;
    }

    Arbitrary_Modint &operator+=(const Arbitrary_Modint &p) {
        x += p.x;
        if (x >= MOD) x -= MOD;
        return *this;
    }

    Arbitrary_Modint &operator-=(const Arbitrary_Modint &p) {
        x -= p.x;
        if (x < 0) x += MOD;
        return *this;
    }

    Arbitrary_Modint &operator*=(const Arbitrary_Modint &p) {
        x = int(1LL * x * p.x % MOD);
        return *this;
    }

    Arbitrary_Modint &operator/=(const Arbitrary_Modint &p) {
        *this *= p.inverse();
        return *this;
    }

    Arbitrary_Modint &operator%=(const Arbitrary_Modint &p) {
        assert(p.x == 0);
        return *this;
    }

    Arbitrary_Modint operator-() const {
        return Arbitrary_Modint(-x);
    }

    Arbitrary_Modint &operator++() {
        x++;
        if (x == MOD) x = 0;
        return *this;
    }

    Arbitrary_Modint &operator--() {
        if (x == 0) x = MOD;
        x--;
        return *this;
    }

    Arbitrary_Modint operator++(int) {
        Arbitrary_Modint result = *this;
        ++*this;
        return result;
    }

    Arbitrary_Modint operator--(int) {
        Arbitrary_Modint result = *this;
        --*this;
        return result;
    }

    friend Arbitrary_Modint operator+(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
        return Arbitrary_Modint(lhs) += rhs;
    }

    friend Arbitrary_Modint operator-(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
        return Arbitrary_Modint(lhs) -= rhs;
    }

    friend Arbitrary_Modint operator*(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
        return Arbitrary_Modint(lhs) *= rhs;
    }

    friend Arbitrary_Modint operator/(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
        return Arbitrary_Modint(lhs) /= rhs;
    }

    friend Arbitrary_Modint operator%(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
        assert(rhs.x == 0);
        return Arbitrary_Modint(lhs);
    }

    bool operator==(const Arbitrary_Modint &p) const {
        return x == p.x;
    }

    bool operator!=(const Arbitrary_Modint &p) const {
        return x != p.x;
    }

    bool operator<(const Arbitrary_Modint &rhs) {
        return x < rhs.x;
    }

    bool operator<=(const Arbitrary_Modint &rhs) {
        return x <= rhs.x;
    }

    bool operator>(const Arbitrary_Modint &rhs) {
        return x > rhs.x;
    }

    bool operator>=(const Arbitrary_Modint &rhs) {
        return x >= rhs.x;
    }

    Arbitrary_Modint inverse() const {
        int a = x, b = MOD, u = 1, v = 0, t;
        while (b > 0) {
            t = a / b;
            a -= t * b;
            u -= t * v;
            swap(a, b);
            swap(u, v);
        }
        return Arbitrary_Modint(u);
    }

    Arbitrary_Modint pow(int64_t k) const {
        Arbitrary_Modint ret(1);
        Arbitrary_Modint y(x);
        while (k > 0) {
            if (k & 1) ret *= y;
            y *= y;
            k >>= 1;
        }
        return ret;
    }

    friend ostream &operator<<(ostream &os, const Arbitrary_Modint &p) {
        return os << p.x;
    }

    friend istream &operator>>(istream &is, Arbitrary_Modint &p) {
        int64_t y;
        is >> y;
        p = Arbitrary_Modint(y);
        return (is);
    }

    static int get_mod() {
        return MOD;
    }
};
int Arbitrary_Modint::MOD = 998244353;

using modint9 = Modint<998244353>;
using modint1 = Modint<1000000007>;
using modint  = Arbitrary_Modint;

// end other/Modint.hpp
// restart A.cpp
using mint = modint9;

void solve() {
    LL(n);
    auto divs   = divisors(n);
    auto primes = compression(primefact(n));
    int ld      = len(divs);
    int lp      = len(primes);
    vvec(int, cnt, ld, lp, 0);
    fori(i, ld) {
        ll d = divs[i];
        fori(j, lp) {
            while (d % primes[j] == 0) {
                d /= primes[j];
                cnt[i][j]++;
            }
        }
    }
    vec(mint, dp, ld, 0);
    dp[0] = 1;
    fori(i, ld) {
        fori(j, i + 1, ld) {
            if (divs[j] % divs[i] != 0) continue;
            mint times = 1;
            fori(k, lp) {
                if (cnt[i][k] == cnt[j][k])
                    times *= cnt[i][k] + 1;
                else if (cnt[i][k] > cnt[j][k]) {
                    times = 0;
                    break;
                }
            }
            dp[j] += dp[i] * times;
        }
    }
    print(dp.back());
}

int main() {
    cin.tie(0)->sync_with_stdio(0);
    // cout << fixed << setprecision(12);
    int t;
    t = 1;
    // cin >> t;
    while (t--) solve();
    return 0;
}

// end A.cpp
0