結果

問題 No.1605 Matrix Shape
ユーザー ecotteaecottea
提出日時 2023-05-27 02:00:02
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 9,665 bytes
コンパイル時間 5,308 ms
コンパイル使用メモリ 274,444 KB
実行使用メモリ 45,704 KB
最終ジャッジ日時 2024-06-07 10:55:40
合計ジャッジ時間 10,520 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 WA -
testcase_04 AC 2 ms
5,376 KB
testcase_05 WA -
testcase_06 AC 3 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 WA -
testcase_09 AC 2 ms
5,376 KB
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 AC 2 ms
5,376 KB
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 AC 2 ms
5,376 KB
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 AC 316 ms
38,932 KB
testcase_23 WA -
testcase_24 WA -
testcase_25 WA -
testcase_26 WA -
testcase_27 WA -
testcase_28 AC 87 ms
10,236 KB
testcase_29 WA -
testcase_30 WA -
testcase_31 WA -
testcase_32 WA -
testcase_33 AC 160 ms
16,880 KB
testcase_34 WA -
testcase_35 AC 184 ms
38,212 KB
testcase_36 AC 106 ms
24,440 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifndef HIDDEN_IN_VS // 折りたたみ用

// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS

// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;

// 型名の短縮
using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9)
using pii = pair<int, int>;	using pll = pair<ll, ll>;	using pil = pair<int, ll>;	using pli = pair<ll, int>;
using vi = vector<int>;		using vvi = vector<vi>;		using vvvi = vector<vvi>;
using vl = vector<ll>;		using vvl = vector<vl>;		using vvvl = vector<vvl>;
using vb = vector<bool>;	using vvb = vector<vb>;		using vvvb = vector<vvb>;
using vc = vector<char>;	using vvc = vector<vc>;		using vvvc = vector<vvc>;
using vd = vector<double>;	using vvd = vector<vd>;		using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;

// 定数の定義
const double PI = acos(-1);
const vi DX = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
const vi DY = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004004004004004LL;
double EPS = 1e-15;

// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;

// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define YES(b) {cout << ((b) ? "YES\n" : "NO\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了

// 汎用関数の定義
template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline T get(T set, int i) { return (set >> i) & T(1); }

// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }

#endif // 折りたたみ用


#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;

#ifdef _MSC_VER
#include "localACL.hpp"
#endif

using mint = modint1000000007;
//using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);

namespace atcoder {
	inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
	inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>;
#endif


#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define gcd __gcd
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) while (1) cout << "OLE"; }
#endif


//【強連結成分分解】O(n + m)
/*
* 有向グラフ g を強連結成分分解し,強連結成分をトポロジカルソート順に格納したリストを返す.
*/
vvi strongly_connected_component(const Graph& g) {
	// 参考 : https://hkawabata.github.io/technical-note/note/Algorithm/graph/scc.html
	// verify : https://judge.yosupo.jp/problem/scc

	int n = sz(g);
	vvi ccs;

	// 辺の向きを逆にしたグラフを作成
	Graph g_rev(n);
	rep(s, n) repe(t, g[s]) g_rev[t].push_back(s);

	// 各頂点の状態(0:未探索,1:順探索済かつ未逆探索,2:逆探索済)
	vi status(n, 0);


	// (step1): まず順探索(深さ優先)を行い,結果をスタックに格納する.

	// 深さ優先の順探索で見つかった順に頂点を記録するスタック
	stack<int> stk;

	// 順探索用の再帰関数
	function<void(int)> trace = [&](int s) {
		// 状態を順探索済かつ未逆探索(1)にする.
		status[s] = 1;

		repe(t, g[s]) {
			// 未探索の頂点を探索しにいく.
			if (status[t] == 0) trace(t);
		}

		// 先の探索が済んだら自身を記録する(深さ優先探索)
		stk.push(s);
	};

	rep(i, n) {
		// 未探索の頂点を見つけたら探索する.
		if (status[i] == 0) trace(i);
	}


	// (step2): 次に逆探索を行い,強連結成分を確定する.

	// 逆探索用の再帰関数
	function<void(int)> trace_rev = [&](int s) {
		// 状態を逆探索済(2)にする.
		status[s] = 2;

		repe(t, g_rev[s]) {
			// 未逆探索の頂点を探索しにいく.
			if (status[t] == 1) trace_rev(t);
		}

		// 先の探索が済んだら自身を強連結成分の一員として記録する.
		ccs.rbegin()->push_back(s);
	};

	while (!stk.empty()) {
		auto v = stk.top();
		stk.pop();

		// 新しい強連結成分を見つけたらそれをなぞりに行く.
		if (status[v] == 1) {
			ccs.push_back(vi());
			trace_rev(v);
		}
	}

	return ccs;
}


//【座標圧縮(区間)】O(n log n)
/*
* n 個の半開区間 [x1[i], x2[i]) を座標圧縮した結果を x1_cp[i], x2_cp[i] に格納する.
* また xs[i] に圧縮された座標 i に対応する元の座標を格納する.
* 戻り値として x 座標の数を返す.
*/
template <class T>
int coordinate_compression_interval(const vector<T>& x1, const vector<T>& x2,
	vi& x1_cp, vi& x2_cp, vector<T>* xs = nullptr)
{
	// verify : https://atcoder.jp/contests/abc188/tasks/abc188_d

	int n = sz(x1);
	if (xs == nullptr) xs = new vector<T>;

	// x 座標だけを抜き出す.
	xs->clear();
	rep(i, n) {
		xs->push_back(x1[i]);
		xs->push_back(x2[i]);
	}

	// *xs : 区間端の x 座標のユニークな昇順列
	uniq(*xs);

	// 各区間の端の座標が xs において何番目かを求める.
	x1_cp.resize(n); x2_cp.resize(n);
	rep(i, n) {
		x1_cp[i] = lbpos(*xs, x1[i]);
		x2_cp[i] = lbpos(*xs, x2[i]);
	}

	return sz(*xs);
}


//【幅優先探索】O(n + m)
/*
* グラフ g に対し,st から各頂点への最短距離(到達不能なら INF)を格納したリストを返す.
*/
template <class G>
vi breadth_first_search(const G& g, int st) {
	// verify : https://algo-method.com/tasks/414

	int n = sz(g);

	vi dist(n, INF); // スタートからの最短距離を保持するテーブル : O(n)
	dist[st] = 0;

	queue<int> que; // 次に探索する頂点を入れておくキュー
	que.push(st);

	while (!que.empty()) {
		// 未探索の頂点を 1 つ得る.
		auto s = que.front(); que.pop();

		repe(t, g[s]) {
			// 発見済みの頂点なら何もしない.
			if (dist[t] != INF) continue;

			// スタートからの最短距離を確定する.
			// 幅優先探索なので,最短だという保証がある.
			dist[t] = dist[s] + 1;

			// 未探索の頂点として t を追加する.
			que.push(t);
		}
	}

	return dist;
}


//【逆グラフ】O(n + m)
/*
* 有向グラフ g の辺の向きを逆にしたグラフを返す.
*/
Graph reverse_graph(const Graph& g) {
	// verify : https://atcoder.jp/contests/nikkei2019-qual/tasks/nikkei2019_qual_d

	int n = sz(g);
	Graph g_rev(n);

	rep(s, n) repe(t, g[s]) g_rev[t].push_back(s);

	return g_rev;
}


int main() {
//	input_from_file("input.txt");
//	output_to_file("output.txt");

	int n;
	cin >> n;

	vi h(n), w(n);
	rep(i, n) cin >> h[i] >> w[i];

	vi h_cp, w_cp;
	int m = coordinate_compression_interval(h, w, h_cp, w_cp);

	Graph g(m);
	rep(i, n) g[h_cp[i]].push_back(w_cp[i]);
	
	auto ccs = strongly_connected_component(g);
	
	if (sz(ccs) == 1) EXIT((ll)m * (m - 1));
	
	int st = ccs.front().front(), gl = ccs.back().front();

	auto d_st = breadth_first_search(g, st);
	rep(i, m) if (d_st[i] == INF) EXIT(0);

	auto g_rev = reverse_graph(g);
	auto d_gl = breadth_first_search(g_rev, gl);
	rep(i, m) if (d_gl[i] == INF) EXIT(0);

	EXIT((ll)sz(ccs.front()) * sz(ccs.back()));
}
0