結果
問題 | No.1605 Matrix Shape |
ユーザー | ecottea |
提出日時 | 2023-05-27 02:00:02 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 9,665 bytes |
コンパイル時間 | 5,308 ms |
コンパイル使用メモリ | 274,444 KB |
実行使用メモリ | 45,704 KB |
最終ジャッジ日時 | 2024-06-07 10:55:40 |
合計ジャッジ時間 | 10,520 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | WA | - |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | WA | - |
testcase_06 | AC | 3 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | WA | - |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | AC | 2 ms
5,376 KB |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | AC | 316 ms
38,932 KB |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | AC | 87 ms
10,236 KB |
testcase_29 | WA | - |
testcase_30 | WA | - |
testcase_31 | WA | - |
testcase_32 | WA | - |
testcase_33 | AC | 160 ms
16,880 KB |
testcase_34 | WA | - |
testcase_35 | AC | 184 ms
38,212 KB |
testcase_36 | AC | 106 ms
24,440 KB |
ソースコード
#ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include <bits/stdc++.h> using namespace std; // 型名の短縮 using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9) using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>; using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>; using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>; template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); const vi DX = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) const vi DY = { 0, 1, 0, -1 }; int INF = 1001001001; ll INFL = 4004004004004004004LL; double EPS = 1e-15; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x)) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x)) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define YES(b) {cout << ((b) ? "YES\n" : "NO\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 // 汎用関数の定義 template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) template <class T> inline T get(T set, int i) { return (set >> i) & T(1); } // 演算子オーバーロード template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; } template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; } template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; } template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; } #endif // 折りたたみ用 #if __has_include(<atcoder/all>) #include <atcoder/all> using namespace atcoder; #ifdef _MSC_VER #include "localACL.hpp" #endif using mint = modint1000000007; //using mint = modint998244353; //using mint = modint; // mint::set_mod(m); namespace atcoder { inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } } using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; #endif #ifdef _MSC_VER // 手元環境(Visual Studio) #include "local.hpp" #else // 提出用(gcc) inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define gcd __gcd #define dump(...) #define dumpel(v) #define dump_list(v) #define dump_mat(v) #define input_from_file(f) #define output_to_file(f) #define Assert(b) { if (!(b)) while (1) cout << "OLE"; } #endif //【強連結成分分解】O(n + m) /* * 有向グラフ g を強連結成分分解し,強連結成分をトポロジカルソート順に格納したリストを返す. */ vvi strongly_connected_component(const Graph& g) { // 参考 : https://hkawabata.github.io/technical-note/note/Algorithm/graph/scc.html // verify : https://judge.yosupo.jp/problem/scc int n = sz(g); vvi ccs; // 辺の向きを逆にしたグラフを作成 Graph g_rev(n); rep(s, n) repe(t, g[s]) g_rev[t].push_back(s); // 各頂点の状態(0:未探索,1:順探索済かつ未逆探索,2:逆探索済) vi status(n, 0); // (step1): まず順探索(深さ優先)を行い,結果をスタックに格納する. // 深さ優先の順探索で見つかった順に頂点を記録するスタック stack<int> stk; // 順探索用の再帰関数 function<void(int)> trace = [&](int s) { // 状態を順探索済かつ未逆探索(1)にする. status[s] = 1; repe(t, g[s]) { // 未探索の頂点を探索しにいく. if (status[t] == 0) trace(t); } // 先の探索が済んだら自身を記録する(深さ優先探索) stk.push(s); }; rep(i, n) { // 未探索の頂点を見つけたら探索する. if (status[i] == 0) trace(i); } // (step2): 次に逆探索を行い,強連結成分を確定する. // 逆探索用の再帰関数 function<void(int)> trace_rev = [&](int s) { // 状態を逆探索済(2)にする. status[s] = 2; repe(t, g_rev[s]) { // 未逆探索の頂点を探索しにいく. if (status[t] == 1) trace_rev(t); } // 先の探索が済んだら自身を強連結成分の一員として記録する. ccs.rbegin()->push_back(s); }; while (!stk.empty()) { auto v = stk.top(); stk.pop(); // 新しい強連結成分を見つけたらそれをなぞりに行く. if (status[v] == 1) { ccs.push_back(vi()); trace_rev(v); } } return ccs; } //【座標圧縮(区間)】O(n log n) /* * n 個の半開区間 [x1[i], x2[i]) を座標圧縮した結果を x1_cp[i], x2_cp[i] に格納する. * また xs[i] に圧縮された座標 i に対応する元の座標を格納する. * 戻り値として x 座標の数を返す. */ template <class T> int coordinate_compression_interval(const vector<T>& x1, const vector<T>& x2, vi& x1_cp, vi& x2_cp, vector<T>* xs = nullptr) { // verify : https://atcoder.jp/contests/abc188/tasks/abc188_d int n = sz(x1); if (xs == nullptr) xs = new vector<T>; // x 座標だけを抜き出す. xs->clear(); rep(i, n) { xs->push_back(x1[i]); xs->push_back(x2[i]); } // *xs : 区間端の x 座標のユニークな昇順列 uniq(*xs); // 各区間の端の座標が xs において何番目かを求める. x1_cp.resize(n); x2_cp.resize(n); rep(i, n) { x1_cp[i] = lbpos(*xs, x1[i]); x2_cp[i] = lbpos(*xs, x2[i]); } return sz(*xs); } //【幅優先探索】O(n + m) /* * グラフ g に対し,st から各頂点への最短距離(到達不能なら INF)を格納したリストを返す. */ template <class G> vi breadth_first_search(const G& g, int st) { // verify : https://algo-method.com/tasks/414 int n = sz(g); vi dist(n, INF); // スタートからの最短距離を保持するテーブル : O(n) dist[st] = 0; queue<int> que; // 次に探索する頂点を入れておくキュー que.push(st); while (!que.empty()) { // 未探索の頂点を 1 つ得る. auto s = que.front(); que.pop(); repe(t, g[s]) { // 発見済みの頂点なら何もしない. if (dist[t] != INF) continue; // スタートからの最短距離を確定する. // 幅優先探索なので,最短だという保証がある. dist[t] = dist[s] + 1; // 未探索の頂点として t を追加する. que.push(t); } } return dist; } //【逆グラフ】O(n + m) /* * 有向グラフ g の辺の向きを逆にしたグラフを返す. */ Graph reverse_graph(const Graph& g) { // verify : https://atcoder.jp/contests/nikkei2019-qual/tasks/nikkei2019_qual_d int n = sz(g); Graph g_rev(n); rep(s, n) repe(t, g[s]) g_rev[t].push_back(s); return g_rev; } int main() { // input_from_file("input.txt"); // output_to_file("output.txt"); int n; cin >> n; vi h(n), w(n); rep(i, n) cin >> h[i] >> w[i]; vi h_cp, w_cp; int m = coordinate_compression_interval(h, w, h_cp, w_cp); Graph g(m); rep(i, n) g[h_cp[i]].push_back(w_cp[i]); auto ccs = strongly_connected_component(g); if (sz(ccs) == 1) EXIT((ll)m * (m - 1)); int st = ccs.front().front(), gl = ccs.back().front(); auto d_st = breadth_first_search(g, st); rep(i, m) if (d_st[i] == INF) EXIT(0); auto g_rev = reverse_graph(g); auto d_gl = breadth_first_search(g_rev, gl); rep(i, m) if (d_gl[i] == INF) EXIT(0); EXIT((ll)sz(ccs.front()) * sz(ccs.back())); }