結果
問題 | No.2314 Backflip |
ユーザー |
![]() |
提出日時 | 2023-05-27 16:24:52 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 6,434 bytes |
コンパイル時間 | 23,599 ms |
コンパイル使用メモリ | 358,748 KB |
最終ジャッジ日時 | 2025-02-13 09:21:03 |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 8 |
ソースコード
#pragma GCC target("avx2")#pragma GCC optimize("O3")#pragma GCC optimize("unroll-loops")#include <bits/stdc++.h>#include <cstdlib>#include <atcoder/all>using namespace atcoder;#define int long long#define double long double#define stoi stoll//#define endl "\n"using std::abs;using namespace std;constexpr double PI = 3.14159265358979323846;const int INF = 1LL << 61;const int dx[8] = { 0,0,1,-1,1,1,-1,-1 };const int dy[8] = { 1,-1,0,0,1,-1,1,-1 };#define rep(i,n) for(int i=0;i<n;++i)#define REP(i,n) for(int i=1;i<=n;i++)#define sREP(i,n) for(int i=1;i*i<=n;++i)#define krep(i,k,n) for(int i=(k);i<n+k;i++)#define Krep(i,k,n) for(int i=(k);i<n;i++)#define rrep(i,n) for(int i=n-1;i>=0;i--)#define Rrep(i,n) for(int i=n;i>0;i--)#define frep(i,n) for(auto &x:n)#define LAST(x) x[x.size()-1]#define ALL(x) (x).begin(),(x).end()#define MAX(x) *max_element(ALL(x))#define MIN(x) *min_element(ALL(x)#define RUD(a,b) (((a)+(b)-1)/(b))#define sum1_n(n) ((n)*(n+1)/2)#define SUM1n2(n) (n*(2*n+1)*(n+1))/6#define SUMkn(k,n) (SUM1n(n)-SUM1n(k-1))#define SZ(x) ((int)(x).size())#define PB push_back#define Fi first#define Se second#define lower(vec, i) *lower_bound(ALL(vec), i)#define upper(vec, i) *upper_bound(ALL(vec), i)#define lower_count(vec, i) (int)(lower_bound(ALL(vec), i) - (vec).begin())#define acc(vec) accumulate(ALL(vec),0LL)template<class... T>constexpr auto min(T... a) {return min(initializer_list<common_type_t<T...>>{a...});}template<class... T>constexpr auto max(T... a) {return max(initializer_list<common_type_t<T...>>{a...});}template<class... T>void in(T&... a) {(cin >> ... >> a);}#define inl(...) long long __VA_ARGS__; in(__VA_ARGS__)string ins() { string x; cin >> x; return x; }template <class T>using v = vector<T>;template <class T>using vv = vector<v<T>>;template <class T>using vvv = vector<vv<T>>;using pint = pair<int, int>;using tint = tuple<int, int, int>;using qint = tuple<int, int, int, int>;double LOG(int a, int b) {return log(b) / log(a);}double DISTANCE(int x1, int y1, int x2, int y2) {return sqrt(abs(x1 - x2) * abs(x1 - x2) + abs(y1 - y2) * abs(y1 - y2));}inline bool BETWEEN(int x, int min, int max) {if (min <= x && x <= max)return true;elsereturn false;}inline bool between(int x, int min, int max) {if (min < x && x < max) return true;else return false;}inline bool BETWEEN2(int i, int j, int H, int W) {if (BETWEEN(i, 0, H - 1) && BETWEEN(j, 0, W - 1)) return true;else return false;}template<class T>inline bool chmin(T& a, T b) {if (a > b) {a = b;return true;}return false;}template<class T>inline bool chmax(T& a, T b) {if (a < b) {a = b;return true;}return false;}inline bool bit(int x, int i) {return x >> i & 1;}void yn(bool x) {if (x) {cout << "Yes" << endl;}else {cout << "No" << endl;}}void YN(bool x) {if (x) {cout << "YES" << endl;}else {cout << "NO" << endl;}}int ipow(int x, int n) {int ans = 1;while (n > 0) {if (n & 1) ans *= x;x *= x;n >>= 1;}return ans;}template <typename T>vector<T> compress(vector<T>& X) {vector<T> vals = X;sort(ALL(vals));vals.erase(unique(ALL(vals)), vals.end());rep(i, SZ(X))X[i] = lower_bound(ALL(vals), X[i]) - vals.begin();return vals;}v<pint> prime_factorize(int N) {v<pint> res;for (int i = 2; i * i <= N; i++) {if (N % i != 0) continue;int ex = 0;while (N % i == 0) {++ex;N /= i;}res.push_back({ i, ex });}if (N != 1) res.push_back({ N, 1 });return res;}struct Eratosthenes {v<bool> isprime;v<int> minfactor;Eratosthenes(int N) : isprime(N + 1, true),minfactor(N + 1, -1) {isprime[0] = false;isprime[1] = false;minfactor[1] = 1;for (int p = 2; p <= N; ++p) {if (!isprime[p]) continue;minfactor[p] = p;for (int q = p * 2; q <= N; q += p) {isprime[q] = false;if (minfactor[q] == -1) minfactor[q] = p;}}}v<pint> factorize(int n) {v<pint> res;while (n > 1) {int p = minfactor[n];int exp = 0;while (minfactor[n] == p) {n /= p;++exp;}res.emplace_back(p, exp);}return res;}};int number_of_divisors(v<pint> p) {int ans = 1;for (pint x : p) {ans *= x.second + 1;}return ans;}int sum_of_divisors(v<pint> p) {int ans = 1;for (pint x : p) {}return ans;}//constexpr int MOD = 1000000007;constexpr int MOD = 998244353;//using mint = modint1000000007;using mint = modint998244353;//using mint = static_modint<16637>;vector<int> prime_enumerate(int N) {vector<bool> sieve(N / 3 + 1, 1);for (int p = 5, d = 4, i = 1, sqn = sqrt(N); p <= sqn; p += d = 6 - d, i++) {if (!sieve[i]) continue;for (int q = p * p / 3, r = d * p / 3 + (d * p % 3 == 2), s = 2 * p,qe = sieve.size();q < qe; q += r = s - r)sieve[q] = 0;}vector<int> ret{ 2, 3 };for (int p = 5, d = 4, i = 1; p <= N; p += d = 6 - d, i++)if (sieve[i]) ret.push_back(p);while (!ret.empty() && ret.back() > N) ret.pop_back();return ret;}const int MAXR = 310000;int fac[MAXR], finv[MAXR], inv[MAXR];void COMinit() {fac[0] = fac[1] = 1;finv[0] = finv[1] = 1;inv[1] = 1;for (int i = 2; i < MAXR; i++) {fac[i] = fac[i - 1] * i % MOD;inv[i] = MOD - inv[MOD % i] * (MOD / i) % MOD;finv[i] = finv[i - 1] * inv[i] % MOD;}}int nCr(int n, int k) {if (n < k)return 0;if (n < 0 || k < 0)return 0;return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;}void solve() {string S = ins();if (LAST(S) == '1')LAST(S) = '0';else LAST(S) = '1';cout << S;}signed main() {ios::sync_with_stdio(false);cin.tie(nullptr);cout << fixed << setprecision(14);//cout << setfill('0') << right << setw(3);solve();}