結果
| 問題 |
No.2332 Make a Sequence
|
| コンテスト | |
| ユーザー |
tute7627
|
| 提出日時 | 2023-05-28 14:00:30 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 302 ms / 2,000 ms |
| コード長 | 18,614 bytes |
| コンパイル時間 | 3,050 ms |
| コンパイル使用メモリ | 237,240 KB |
| 最終ジャッジ日時 | 2025-02-13 10:35:25 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 61 |
ソースコード
//#define _GLIBCXX_DEBUG
//#pragma GCC target("avx2")
//#pragma GCC optimize("O3")
//#pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>
using namespace std;
#ifdef LOCAL
#include <debug_print.hpp>
#define OUT(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__)
#else
#define OUT(...) (static_cast<void>(0))
#endif
#define endl '\n'
#define lfs cout<<fixed<<setprecision(15)
#define ALL(a) (a).begin(),(a).end()
#define ALLR(a) (a).rbegin(),(a).rend()
#define UNIQUE(a) (a).erase(unique((a).begin(),(a).end()),(a).end())
#define spa << " " <<
#define fi first
#define se second
#define MP make_pair
#define MT make_tuple
#define PB push_back
#define EB emplace_back
#define rep(i,n,m) for(ll i = (n); i < (ll)(m); i++)
#define rrep(i,n,m) for(ll i = (ll)(m) - 1; i >= (ll)(n); i--)
using ll = long long;
using ld = long double;
const ll MOD1 = 1e9+7;
const ll MOD9 = 998244353;
const ll INF = 1e18;
using P = pair<ll, ll>;
template<typename T> using PQ = priority_queue<T>;
template<typename T> using QP = priority_queue<T,vector<T>,greater<T>>;
template<typename T1, typename T2>bool chmin(T1 &a,T2 b){if(a>b){a=b;return true;}else return false;}
template<typename T1, typename T2>bool chmax(T1 &a,T2 b){if(a<b){a=b;return true;}else return false;}
ll median(ll a,ll b, ll c){return a+b+c-max({a,b,c})-min({a,b,c});}
void ans1(bool x){if(x) cout<<"Yes"<<endl;else cout<<"No"<<endl;}
void ans2(bool x){if(x) cout<<"YES"<<endl;else cout<<"NO"<<endl;}
void ans3(bool x){if(x) cout<<"Yay!"<<endl;else cout<<":("<<endl;}
template<typename T1,typename T2>void ans(bool x,T1 y,T2 z){if(x)cout<<y<<endl;else cout<<z<<endl;}
template<typename T1,typename T2,typename T3>void anss(T1 x,T2 y,T3 z){ans(x!=y,x,z);};
template<typename T>void debug(const T &v,ll h,ll w,string sv=" "){for(ll i=0;i<h;i++){cout<<v[i][0];for(ll j=1;j<w;j++)cout<<sv<<v[i][j];cout<<endl;}};
template<typename T>void debug(const T &v,ll n,string sv=" "){if(n!=0)cout<<v[0];for(ll i=1;i<n;i++)cout<<sv<<v[i];cout<<endl;};
template<typename T>void debug(const vector<T>&v){debug(v,v.size());}
template<typename T>void debug(const vector<vector<T>>&v){for(auto &vv:v)debug(vv,vv.size());}
template<typename T>void debug(stack<T> st){while(!st.empty()){cout<<st.top()<<" ";st.pop();}cout<<endl;}
template<typename T>void debug(queue<T> st){while(!st.empty()){cout<<st.front()<<" ";st.pop();}cout<<endl;}
template<typename T>void debug(deque<T> st){while(!st.empty()){cout<<st.front()<<" ";st.pop_front();}cout<<endl;}
template<typename T>void debug(PQ<T> st){while(!st.empty()){cout<<st.top()<<" ";st.pop();}cout<<endl;}
template<typename T>void debug(QP<T> st){while(!st.empty()){cout<<st.top()<<" ";st.pop();}cout<<endl;}
template<typename T>void debug(const set<T>&v){for(auto z:v)cout<<z<<" ";cout<<endl;}
template<typename T>void debug(const multiset<T>&v){for(auto z:v)cout<<z<<" ";cout<<endl;}
template<typename T,size_t size>void debug(const array<T, size> &a){for(auto z:a)cout<<z<<" ";cout<<endl;}
template<typename T,typename V>void debug(const map<T,V>&v){for(auto z:v)cout<<"["<<z.first<<"]="<<z.second<<",";cout<<endl;}
template<typename T>vector<vector<T>>vec(ll x, ll y, T w){vector<vector<T>>v(x,vector<T>(y,w));return v;}
ll gcd(ll x,ll y){ll r;while(y!=0&&(r=x%y)!=0){x=y;y=r;}return y==0?x:y;}
vector<ll>dx={1,-1,0,0,1,1,-1,-1};vector<ll>dy={0,0,1,-1,1,-1,1,-1};
template<typename T>vector<T> make_v(size_t a,T b){return vector<T>(a,b);}
template<typename... Ts>auto make_v(size_t a,Ts... ts){return vector<decltype(make_v(ts...))>(a,make_v(ts...));}
template<typename T1, typename T2>ostream &operator<<(ostream &os, const pair<T1, T2>&p){return os << "(" << p.first << "," << p.second << ")";}
template<typename T>ostream &operator<<(ostream &os, const vector<T> &v){os<<"[";for(auto &z:v)os << z << ",";os<<"]"; return os;}
template<typename T>void rearrange(vector<int>&ord, vector<T>&v){
auto tmp = v;
for(int i=0;i<tmp.size();i++)v[i] = tmp[ord[i]];
}
template<typename Head, typename... Tail>void rearrange(vector<int>&ord,Head&& head, Tail&&... tail){
rearrange(ord, head);
rearrange(ord, tail...);
}
template<typename T> vector<int> ascend(const vector<T>&v){
vector<int>ord(v.size());iota(ord.begin(),ord.end(),0);
sort(ord.begin(),ord.end(),[&](int i,int j){return make_pair(v[i],i)<make_pair(v[j],j);});
return ord;
}
template<typename T> vector<int> descend(const vector<T>&v){
vector<int>ord(v.size());iota(ord.begin(),ord.end(),0);
sort(ord.begin(),ord.end(),[&](int i,int j){return make_pair(v[i],-i)>make_pair(v[j],-j);});
return ord;
}
template<typename T> vector<T> inv_perm(const vector<T>&ord){
vector<T>inv(ord.size());
for(int i=0;i<ord.size();i++)inv[ord[i]] = i;
return inv;
}
ll FLOOR(ll n,ll div){assert(div>0);return n>=0?n/div:(n-div+1)/div;}
ll CEIL(ll n,ll div){assert(div>0);return n>=0?(n+div-1)/div:n/div;}
ll digitsum(ll n){ll ret=0;while(n){ret+=n%10;n/=10;}return ret;}
ll modulo(ll n,ll d){return (n%d+d)%d;};
template<typename T>T min(const vector<T>&v){return *min_element(v.begin(),v.end());}
template<typename T>T max(const vector<T>&v){return *max_element(v.begin(),v.end());}
template<typename T>T acc(const vector<T>&v){return accumulate(v.begin(),v.end(),T(0));};
template<typename T>T reverse(const T &v){return T(v.rbegin(),v.rend());};
//mt19937 mt(chrono::steady_clock::now().time_since_epoch().count());
int popcount(ll x){return __builtin_popcountll(x);};
int poplow(ll x){return __builtin_ctzll(x);};
int pophigh(ll x){return 63 - __builtin_clzll(x);};
template<typename T>T poll(queue<T> &q){auto ret=q.front();q.pop();return ret;};
template<typename T>T poll(priority_queue<T> &q){auto ret=q.top();q.pop();return ret;};
template<typename T>T poll(QP<T> &q){auto ret=q.top();q.pop();return ret;};
template<typename T>T poll(stack<T> &s){auto ret=s.top();s.pop();return ret;};
ll MULT(ll x,ll y){if(LLONG_MAX/x<=y)return LLONG_MAX;return x*y;}
ll POW2(ll x, ll k){ll ret=1,mul=x;while(k){if(mul==LLONG_MAX)return LLONG_MAX;if(k&1)ret=MULT(ret,mul);mul=MULT(mul,mul);k>>=1;}return ret;}
ll POW(ll x, ll k){ll ret=1;for(int i=0;i<k;i++){if(LLONG_MAX/x<=ret)return LLONG_MAX;ret*=x;}return ret;}
namespace converter{
int dict[500];
const string lower="abcdefghijklmnopqrstuvwxyz";
const string upper="ABCDEFGHIJKLMNOPQRSTUVWXYZ";
const string digit="0123456789";
const string digit1="123456789";
void regi_str(const string &t){
for(int i=0;i<t.size();i++){
dict[t[i]]=i;
}
}
void regi_int(const string &t){
for(int i=0;i<t.size();i++){
dict[i]=t[i];
}
}
vector<int>to_int(const string &s,const string &t){
regi_str(t);
vector<int>ret(s.size());
for(int i=0;i<s.size();i++){
ret[i]=dict[s[i]];
}
return ret;
}
vector<int>to_int(const string &s){
auto t=s;
sort(t.begin(),t.end());
t.erase(unique(t.begin(),t.end()),t.end());
return to_int(s,t);
}
vector<vector<int>>to_int(const vector<string>&s,const string &t){
regi_str(t);
vector<vector<int>>ret(s.size(),vector<int>(s[0].size()));
for(int i=0;i<s.size();i++){
for(int j=0;j<s[0].size();j++){
ret[i][j]=dict[s[i][j]];
}
}
return ret;
}
vector<vector<int>>to_int(const vector<string>&s){
string t;
for(int i=0;i<s.size();i++){
t+=s[i];
}
sort(t.begin(),t.end());t.erase(unique(t.begin(),t.end()),t.end());
return to_int(s,t);
}
string to_str(const vector<int>&s,const string &t){
regi_int(t);
string ret;
for(auto z:s)ret+=dict[z];
return ret;
}
vector<string> to_str(const vector<vector<int>>&s,const string &t){
regi_int(t);
vector<string>ret(s.size());
for(int i=0;i<s.size();i++){
for(auto z:s[i])ret[i]+=dict[z];
}
return ret;
}
}
template< typename T = int >
struct edge {
int to;
T cost;
int id;
edge():to(-1),id(-1){};
edge(int to, T cost = 1, int id = -1):to(to), cost(cost), id(id){}
operator int() const { return to; }
};
template<typename T>
using Graph = vector<vector<edge<T>>>;
template<typename T>
Graph<T>revgraph(const Graph<T> &g){
Graph<T>ret(g.size());
for(int i=0;i<g.size();i++){
for(auto e:g[i]){
int to = e.to;
e.to = i;
ret[to].push_back(e);
}
}
return ret;
}
template<typename T>
Graph<T> readGraph(int n,int m,int indexed=1,bool directed=false,bool weighted=false){
Graph<T> ret(n);
for(int es = 0; es < m; es++){
int u,v;
T w=1;
cin>>u>>v;u-=indexed,v-=indexed;
if(weighted)cin>>w;
ret[u].emplace_back(v,w,es);
if(!directed)ret[v].emplace_back(u,w,es);
}
return ret;
}
template<typename T>
Graph<T> readParent(int n,int indexed=1,bool directed=true){
Graph<T>ret(n);
for(int i=1;i<n;i++){
int p;cin>>p;
p-=indexed;
ret[p].emplace_back(i);
if(!directed)ret[i].emplace_back(p);
}
return ret;
}
namespace atcoder {
namespace internal {
std::vector<int> sa_naive(const std::vector<int>& s) {
int n = int(s.size());
std::vector<int> sa(n);
std::iota(sa.begin(), sa.end(), 0);
std::sort(sa.begin(), sa.end(), [&](int l, int r) {
if (l == r) return false;
while (l < n && r < n) {
if (s[l] != s[r]) return s[l] < s[r];
l++;
r++;
}
return l == n;
});
return sa;
}
std::vector<int> sa_doubling(const std::vector<int>& s) {
int n = int(s.size());
std::vector<int> sa(n), rnk = s, tmp(n);
std::iota(sa.begin(), sa.end(), 0);
for (int k = 1; k < n; k *= 2) {
auto cmp = [&](int x, int y) {
if (rnk[x] != rnk[y]) return rnk[x] < rnk[y];
int rx = x + k < n ? rnk[x + k] : -1;
int ry = y + k < n ? rnk[y + k] : -1;
return rx < ry;
};
std::sort(sa.begin(), sa.end(), cmp);
tmp[sa[0]] = 0;
for (int i = 1; i < n; i++) {
tmp[sa[i]] = tmp[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0);
}
std::swap(tmp, rnk);
}
return sa;
}
// SA-IS, linear-time suffix array construction
// Reference:
// G. Nong, S. Zhang, and W. H. Chan,
// Two Efficient Algorithms for Linear Time Suffix Array Construction
template <int THRESHOLD_NAIVE = 10, int THRESHOLD_DOUBLING = 40>
std::vector<int> sa_is(const std::vector<int>& s, int upper) {
int n = int(s.size());
if (n == 0) return {};
if (n == 1) return {0};
if (n == 2) {
if (s[0] < s[1]) {
return {0, 1};
} else {
return {1, 0};
}
}
if (n < THRESHOLD_NAIVE) {
return sa_naive(s);
}
if (n < THRESHOLD_DOUBLING) {
return sa_doubling(s);
}
std::vector<int> sa(n);
std::vector<bool> ls(n);
for (int i = n - 2; i >= 0; i--) {
ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]);
}
std::vector<int> sum_l(upper + 1), sum_s(upper + 1);
for (int i = 0; i < n; i++) {
if (!ls[i]) {
sum_s[s[i]]++;
} else {
sum_l[s[i] + 1]++;
}
}
for (int i = 0; i <= upper; i++) {
sum_s[i] += sum_l[i];
if (i < upper) sum_l[i + 1] += sum_s[i];
}
auto induce = [&](const std::vector<int>& lms) {
std::fill(sa.begin(), sa.end(), -1);
std::vector<int> buf(upper + 1);
std::copy(sum_s.begin(), sum_s.end(), buf.begin());
for (auto d : lms) {
if (d == n) continue;
sa[buf[s[d]]++] = d;
}
std::copy(sum_l.begin(), sum_l.end(), buf.begin());
sa[buf[s[n - 1]]++] = n - 1;
for (int i = 0; i < n; i++) {
int v = sa[i];
if (v >= 1 && !ls[v - 1]) {
sa[buf[s[v - 1]]++] = v - 1;
}
}
std::copy(sum_l.begin(), sum_l.end(), buf.begin());
for (int i = n - 1; i >= 0; i--) {
int v = sa[i];
if (v >= 1 && ls[v - 1]) {
sa[--buf[s[v - 1] + 1]] = v - 1;
}
}
};
std::vector<int> lms_map(n + 1, -1);
int m = 0;
for (int i = 1; i < n; i++) {
if (!ls[i - 1] && ls[i]) {
lms_map[i] = m++;
}
}
std::vector<int> lms;
lms.reserve(m);
for (int i = 1; i < n; i++) {
if (!ls[i - 1] && ls[i]) {
lms.push_back(i);
}
}
induce(lms);
if (m) {
std::vector<int> sorted_lms;
sorted_lms.reserve(m);
for (int v : sa) {
if (lms_map[v] != -1) sorted_lms.push_back(v);
}
std::vector<int> rec_s(m);
int rec_upper = 0;
rec_s[lms_map[sorted_lms[0]]] = 0;
for (int i = 1; i < m; i++) {
int l = sorted_lms[i - 1], r = sorted_lms[i];
int end_l = (lms_map[l] + 1 < m) ? lms[lms_map[l] + 1] : n;
int end_r = (lms_map[r] + 1 < m) ? lms[lms_map[r] + 1] : n;
bool same = true;
if (end_l - l != end_r - r) {
same = false;
} else {
while (l < end_l) {
if (s[l] != s[r]) {
break;
}
l++;
r++;
}
if (l == n || s[l] != s[r]) same = false;
}
if (!same) rec_upper++;
rec_s[lms_map[sorted_lms[i]]] = rec_upper;
}
auto rec_sa =
sa_is<THRESHOLD_NAIVE, THRESHOLD_DOUBLING>(rec_s, rec_upper);
for (int i = 0; i < m; i++) {
sorted_lms[i] = lms[rec_sa[i]];
}
induce(sorted_lms);
}
return sa;
}
} // namespace internal
std::vector<int> suffix_array(const std::vector<int>& s, int upper) {
assert(0 <= upper);
for (int d : s) {
assert(0 <= d && d <= upper);
}
auto sa = internal::sa_is(s, upper);
return sa;
}
template <class T> std::vector<int> suffix_array(const std::vector<T>& s) {
int n = int(s.size());
std::vector<int> idx(n);
iota(idx.begin(), idx.end(), 0);
sort(idx.begin(), idx.end(), [&](int l, int r) { return s[l] < s[r]; });
std::vector<int> s2(n);
int now = 0;
for (int i = 0; i < n; i++) {
if (i && s[idx[i - 1]] != s[idx[i]]) now++;
s2[idx[i]] = now;
}
return internal::sa_is(s2, now);
}
std::vector<int> suffix_array(const std::string& s) {
int n = int(s.size());
std::vector<int> s2(n);
for (int i = 0; i < n; i++) {
s2[i] = s[i];
}
return internal::sa_is(s2, 255);
}
// Reference:
// T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park,
// Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its
// Applications
template <class T>
std::vector<int> lcp_array(const std::vector<T>& s,
const std::vector<int>& sa) {
int n = int(s.size());
assert(n >= 1);
std::vector<int> rnk(n);
for (int i = 0; i < n; i++) {
rnk[sa[i]] = i;
}
std::vector<int> lcp(n - 1);
int h = 0;
for (int i = 0; i < n; i++) {
if (h > 0) h--;
if (rnk[i] == 0) continue;
int j = sa[rnk[i] - 1];
for (; j + h < n && i + h < n; h++) {
if (s[j + h] != s[i + h]) break;
}
lcp[rnk[i] - 1] = h;
}
return lcp;
}
std::vector<int> lcp_array(const std::string& s, const std::vector<int>& sa) {
int n = int(s.size());
std::vector<int> s2(n);
for (int i = 0; i < n; i++) {
s2[i] = s[i];
}
return lcp_array(s2, sa);
}
// Reference:
// D. Gusfield,
// Algorithms on Strings, Trees, and Sequences: Computer Science and
// Computational Biology
template <class T> std::vector<int> z_algorithm(const std::vector<T>& s) {
int n = int(s.size());
if (n == 0) return {};
std::vector<int> z(n);
z[0] = 0;
for (int i = 1, j = 0; i < n; i++) {
int& k = z[i];
k = (j + z[j] <= i) ? 0 : std::min(j + z[j] - i, z[i - j]);
while (i + k < n && s[k] == s[i + k]) k++;
if (j + z[j] < i + z[i]) j = i;
}
z[0] = n;
return z;
}
std::vector<int> z_algorithm(const std::string& s) {
int n = int(s.size());
std::vector<int> s2(n);
for (int i = 0; i < n; i++) {
s2[i] = s[i];
}
return z_algorithm(s2);
}
} // namespace atcoder
struct Line {
mutable ll k, m, p;
bool operator<(const Line& o) const { return k < o.k; }
bool operator<(ll x) const { return p < x; }
};
/**
* Author: Simon Lindholm
* Date: 2017-04-20
* License: CC0
* Source: own work
* Description: Container where you can add lines of the form kx+m, and query maximum values at points x.
* Useful for dynamic programming (``convex hull trick'').
* Time: O(\log N)
* Status: stress-tested
*/
template <bool isMin = true> struct LineContainer : multiset<Line, less<>> {
// (for doubles, use inf = 1/.0, div(a,b) = a/b)
const ll inf = LLONG_MAX/2;
ll div(ll a, ll b) { // floored division
return a / b - ((a ^ b) < 0 && a % b);
}
bool isect(iterator x, iterator y) {
if(y == end()) {
x->p = inf;
return false;
}
if(x->k == y->k)
x->p = x->m > y->m ? inf : -inf;
else
x->p = div(y->m - x->m, x->k - y->k);
return x->p >= y->p;
}
void add(ll k, ll m) {
if(isMin) k = -k, m = -m;
auto z = insert({k, m, 0}), y = z++, x = y;
while(isect(y, z)) z = erase(z);
if(x != begin() && isect(--x, y)) isect(x, y = erase(y));
while((y = x) != begin() && (--x)->p >= y->p) isect(x, erase(y));
}
ll query(ll x) {
assert(!empty());
auto l = *lower_bound(x);
ll s = 1;
if(isMin) s = -1;
return s * (l.k * x + l.m);
}
};
int main(){
cin.tie(nullptr);
ios_base::sync_with_stdio(false);
ll res=0,buf=0;
bool judge = true;
ll n,m;cin>>n>>m;
vector<ll>a(n);
rep(i,0,n)cin>>a[i];
vector<ll>b(m);
rep(i,0,m)cin>>b[i];
vector<ll>c(m);
rep(i,0,m)cin>>c[i];
rep(i,0,m)a.PB(b[i]);
auto zv=atcoder::z_algorithm(a);
vector<ll>dp(m+1,INF);
dp[0]=0;
auto rec=[&](auto &&f,ll l,ll r)->void {
ll m=(l+r)/2;
if(r-l>=2)f(f,l,m);
vector<vector<P>>g(r-m);
rep(i,l,m){
ll lcp=zv[i+n];
if(i+lcp>=m){
g[min(i+lcp-m,r-m-1)].EB(c[i],dp[i]-i*c[i]);
}
}
LineContainer<true>cht;
rrep(i,m,r){
for(auto z:g[i-m])cht.add(z.fi,z.se);
if(!cht.empty()){
chmin(dp[i],cht.query(i));
}
}
//OUT(l,m,r,dp);
if(r-l>=2)f(f,m,r);
};
rec(rec,0,m+1);
anss(dp[m],INF,-1);
return 0;
}
tute7627