結果
問題 | No.2327 Inversion Sum |
ユーザー | 👑 emthrm |
提出日時 | 2023-05-28 14:16:38 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 26 ms / 2,000 ms |
コード長 | 7,778 bytes |
コンパイル時間 | 2,984 ms |
コンパイル使用メモリ | 260,620 KB |
実行使用メモリ | 5,504 KB |
最終ジャッジ日時 | 2024-06-08 05:04:39 |
合計ジャッジ時間 | 4,130 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 5 ms
5,248 KB |
testcase_01 | AC | 24 ms
5,504 KB |
testcase_02 | AC | 17 ms
5,376 KB |
testcase_03 | AC | 5 ms
5,376 KB |
testcase_04 | AC | 26 ms
5,376 KB |
testcase_05 | AC | 5 ms
5,376 KB |
testcase_06 | AC | 17 ms
5,376 KB |
testcase_07 | AC | 12 ms
5,376 KB |
testcase_08 | AC | 5 ms
5,376 KB |
testcase_09 | AC | 23 ms
5,376 KB |
testcase_10 | AC | 7 ms
5,376 KB |
testcase_11 | AC | 3 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 14 ms
5,376 KB |
testcase_15 | AC | 23 ms
5,376 KB |
testcase_16 | AC | 10 ms
5,376 KB |
testcase_17 | AC | 3 ms
5,376 KB |
testcase_18 | AC | 4 ms
5,376 KB |
testcase_19 | AC | 8 ms
5,376 KB |
testcase_20 | AC | 1 ms
5,376 KB |
testcase_21 | AC | 2 ms
5,376 KB |
testcase_22 | AC | 2 ms
5,376 KB |
testcase_23 | AC | 1 ms
5,376 KB |
testcase_24 | AC | 2 ms
5,376 KB |
testcase_25 | AC | 1 ms
5,376 KB |
testcase_26 | AC | 1 ms
5,376 KB |
testcase_27 | AC | 2 ms
5,376 KB |
testcase_28 | AC | 1 ms
5,376 KB |
testcase_29 | AC | 1 ms
5,376 KB |
testcase_30 | AC | 2 ms
5,376 KB |
testcase_31 | AC | 1 ms
5,376 KB |
testcase_32 | AC | 1 ms
5,376 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; constexpr int INF = 0x3f3f3f3f; constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL; constexpr double EPS = 1e-8; constexpr int MOD = 998244353; // constexpr int MOD = 1000000007; constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1}; constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1}; constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1}; template <typename T, typename U> inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; } template <typename T, typename U> inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << fixed << setprecision(20); } } iosetup; template <unsigned int M> struct MInt { unsigned int v; constexpr MInt() : v(0) {} constexpr MInt(const long long x) : v(x >= 0 ? x % M : x % M + M) {} static constexpr MInt raw(const int x) { MInt x_; x_.v = x; return x_; } static constexpr int get_mod() { return M; } static constexpr void set_mod(const int divisor) { assert(std::cmp_equal(divisor, M)); } static void init(const int x) { inv<true>(x); fact(x); fact_inv(x); } template <bool MEMOIZES = false> static MInt inv(const int n) { // assert(0 <= n && n < M && std::gcd(n, M) == 1); static std::vector<MInt> inverse{0, 1}; const int prev = inverse.size(); if (n < prev) return inverse[n]; if constexpr (MEMOIZES) { // "n!" and "M" must be disjoint. inverse.resize(n + 1); for (int i = prev; i <= n; ++i) { inverse[i] = -inverse[M % i] * raw(M / i); } return inverse[n]; } int u = 1, v = 0; for (unsigned int a = n, b = M; b;) { const unsigned int q = a / b; std::swap(a -= q * b, b); std::swap(u -= q * v, v); } return u; } static MInt fact(const int n) { static std::vector<MInt> factorial{1}; if (const int prev = factorial.size(); n >= prev) { factorial.resize(n + 1); for (int i = prev; i <= n; ++i) { factorial[i] = factorial[i - 1] * i; } } return factorial[n]; } static MInt fact_inv(const int n) { static std::vector<MInt> f_inv{1}; if (const int prev = f_inv.size(); n >= prev) { f_inv.resize(n + 1); f_inv[n] = inv(fact(n).v); for (int i = n; i > prev; --i) { f_inv[i - 1] = f_inv[i] * i; } } return f_inv[n]; } static MInt nCk(const int n, const int k) { if (n < 0 || n < k || k < 0) [[unlikely]] return MInt(); return fact(n) * (n - k < k ? fact_inv(k) * fact_inv(n - k) : fact_inv(n - k) * fact_inv(k)); } static MInt nPk(const int n, const int k) { return n < 0 || n < k || k < 0 ? MInt() : fact(n) * fact_inv(n - k); } static MInt nHk(const int n, const int k) { return n < 0 || k < 0 ? MInt() : (k == 0 ? 1 : nCk(n + k - 1, k)); } static MInt large_nCk(long long n, const int k) { if (n < 0 || n < k || k < 0) [[unlikely]] return MInt(); inv<true>(k); MInt res = 1; for (int i = 1; i <= k; ++i) { res *= inv(i) * n--; } return res; } constexpr MInt pow(long long exponent) const { MInt res = 1, tmp = *this; for (; exponent > 0; exponent >>= 1) { if (exponent & 1) res *= tmp; tmp *= tmp; } return res; } constexpr MInt& operator+=(const MInt& x) { if ((v += x.v) >= M) v -= M; return *this; } constexpr MInt& operator-=(const MInt& x) { if ((v += M - x.v) >= M) v -= M; return *this; } constexpr MInt& operator*=(const MInt& x) { v = (unsigned long long){v} * x.v % M; return *this; } MInt& operator/=(const MInt& x) { return *this *= inv(x.v); } constexpr auto operator<=>(const MInt& x) const = default; constexpr MInt& operator++() { if (++v == M) [[unlikely]] v = 0; return *this; } constexpr MInt operator++(int) { const MInt res = *this; ++*this; return res; } constexpr MInt& operator--() { v = (v == 0 ? M - 1 : v - 1); return *this; } constexpr MInt operator--(int) { const MInt res = *this; --*this; return res; } constexpr MInt operator+() const { return *this; } constexpr MInt operator-() const { return raw(v ? M - v : 0); } constexpr MInt operator+(const MInt& x) const { return MInt(*this) += x; } constexpr MInt operator-(const MInt& x) const { return MInt(*this) -= x; } constexpr MInt operator*(const MInt& x) const { return MInt(*this) *= x; } MInt operator/(const MInt& x) const { return MInt(*this) /= x; } friend std::ostream& operator<<(std::ostream& os, const MInt& x) { return os << x.v; } friend std::istream& operator>>(std::istream& is, MInt& x) { long long v; is >> v; x = MInt(v); return is; } }; using ModInt = MInt<MOD>; template <typename Abelian> struct FenwickTree { explicit FenwickTree(const int n, const Abelian ID = 0) : n(n), ID(ID), data(n, ID) {} void add(int idx, const Abelian val) { for (; idx < n; idx |= idx + 1) { data[idx] += val; } } Abelian sum(int idx) const { Abelian res = ID; for (--idx; idx >= 0; idx = (idx & (idx + 1)) - 1) { res += data[idx]; } return res; } Abelian sum(const int left, const int right) const { return left < right ? sum(right) - sum(left) : ID; } Abelian operator[](const int idx) const { return sum(idx, idx + 1); } int lower_bound(Abelian val) const { if (val <= ID) [[unlikely]] return 0; int res = 0; for (int mask = std::bit_ceil(static_cast<unsigned int>(n + 1)) >> 1; mask > 0; mask >>= 1) { const int idx = res + mask - 1; if (idx < n && data[idx] < val) { val -= data[idx]; res += mask; } } return res; } private: const int n; const Abelian ID; std::vector<Abelian> data; }; template <typename T> long long inversion_number(const std::vector<T>& a) { const int n = a.size(); std::vector<T> b = a; std::sort(b.begin(), b.end()); b.erase(std::unique(b.begin(), b.end()), b.end()); FenwickTree<int> bit(b.size()); long long res = 0; for (int i = 0; i < n; ++i) { const int idx = std::distance( b.begin(), std::lower_bound(b.begin(), b.end(), a[i])); res += i - bit.sum(idx + 1); bit.add(idx, 1); } return res; } int main() { int n, m; cin >> n >> m; vector<int> v(n, -1), is_fixed(n, false); while (m--) { int p, k; cin >> p >> k; --p; --k; v[k] = p; is_fixed[p] = true; } vector<int> hole_num(n, 0); REP(i, n) { if (v[i] == -1) hole_num[i] = 1; } for (int i = n - 2; i >= 0; --i) { hole_num[i] += hole_num[i + 1]; } // REP(i, n) cout << hole_num[i] << " \n"[i + 1 == n]; vector<int> not_fixed_num(n, 0); REP(i, n) { if (!is_fixed[i]) not_fixed_num[i] = 1; } FOR(i, 1, n) not_fixed_num[i] += not_fixed_num[i - 1]; // REP(i, n) cout << not_fixed_num[i] << " \n"[i + 1 == n]; ModInt ans = 0; const int x = not_fixed_num[n - 1]; // 固定 と 固定 vector<int> fixed; REP(i, n) { if (v[i] != -1) fixed.emplace_back(v[i]); } ans += ModInt::fact(x) * inversion_number(fixed); // 固定 と not 固定 if (x > 0) { REP(i, n) { if (v[i] != -1) { ans += ModInt::fact(x - 1) * hole_num[i] * not_fixed_num[v[i]]; // 右 ans += ModInt::fact(x - 1) * (x - hole_num[i]) * (x - not_fixed_num[v[i]]); // 左 } } } // not 固定 と not 固定 ans += ModInt::fact(x) * x * (x - 1) / 2 / 2; cout << ans << '\n'; return 0; }