結果
問題 | No.2331 Maximum Quadrilateral |
ユーザー | mikam |
提出日時 | 2023-05-28 14:22:03 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 10,009 bytes |
コンパイル時間 | 4,389 ms |
コンパイル使用メモリ | 240,728 KB |
実行使用メモリ | 13,772 KB |
最終ジャッジ日時 | 2024-12-27 00:44:39 |
合計ジャッジ時間 | 63,067 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | TLE | - |
testcase_01 | TLE | - |
testcase_02 | TLE | - |
testcase_03 | TLE | - |
testcase_04 | TLE | - |
testcase_05 | TLE | - |
testcase_06 | TLE | - |
testcase_07 | TLE | - |
testcase_08 | TLE | - |
testcase_09 | TLE | - |
testcase_10 | WA | - |
testcase_11 | TLE | - |
testcase_12 | AC | 1,858 ms
13,772 KB |
testcase_13 | TLE | - |
testcase_14 | TLE | - |
testcase_15 | AC | 293 ms
8,448 KB |
testcase_16 | AC | 1,316 ms
8,320 KB |
testcase_17 | AC | 69 ms
10,016 KB |
testcase_18 | WA | - |
testcase_19 | AC | 99 ms
5,248 KB |
testcase_20 | TLE | - |
testcase_21 | TLE | - |
testcase_22 | TLE | - |
testcase_23 | TLE | - |
testcase_24 | TLE | - |
testcase_25 | AC | 2 ms
5,248 KB |
testcase_26 | AC | 2 ms
5,248 KB |
testcase_27 | AC | 2 ms
5,248 KB |
testcase_28 | AC | 2 ms
5,248 KB |
testcase_29 | AC | 2 ms
5,248 KB |
testcase_30 | AC | 2 ms
5,248 KB |
testcase_31 | AC | 1 ms
5,248 KB |
testcase_32 | AC | 2 ms
5,248 KB |
testcase_33 | AC | 2 ms
5,248 KB |
testcase_34 | AC | 2 ms
5,248 KB |
testcase_35 | AC | 2 ms
5,248 KB |
testcase_36 | AC | 1 ms
5,248 KB |
testcase_37 | AC | 2 ms
5,248 KB |
testcase_38 | AC | 2 ms
5,248 KB |
testcase_39 | AC | 2 ms
5,248 KB |
testcase_40 | AC | 1 ms
5,248 KB |
testcase_41 | AC | 2 ms
5,248 KB |
testcase_42 | AC | 2 ms
5,248 KB |
testcase_43 | AC | 2 ms
5,248 KB |
testcase_44 | AC | 2 ms
5,248 KB |
testcase_45 | AC | 2 ms
5,248 KB |
testcase_46 | AC | 2 ms
10,020 KB |
ソースコード
// #include "atcoder/convolution" #include "atcoder/dsu" #include "atcoder/fenwicktree" #include "atcoder/lazysegtree" #include "atcoder/math" #include "atcoder/maxflow" #include "atcoder/mincostflow" #include "atcoder/modint" #include "atcoder/scc" #include "atcoder/segtree" #include "atcoder/string" #include "atcoder/twosat" using namespace atcoder; #include <bits/stdc++.h> using namespace std; // #include <boost/multiprecision/cpp_int.hpp> #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #define rep(i, n) for (int i = 0; i < (int)(n); i++) #define rep2(i,a,b) for (int i = (int)(a); i < (int)(b); i++) #define all(v) v.begin(),v.end() #define inc(x,l,r) ((l)<=(x)&&(x)<(r)) #define Unique(x) sort(all(x)), x.erase(unique(all(x)), x.end()) #define pcnt __builtin_popcountll typedef long long ll; #define int ll using ld = long double; using vi = vector<int>; using vs = vector<string>; using P = pair<int,int>; using vp = vector<P>; // using Bint = boost::multiprecision::cpp_int; template<typename T1,typename T2> bool chmax(T1 &a, const T2 b) {if (a < b) {a = b; return true;} else return false; } template<typename T1,typename T2> bool chmin(T1 &a, const T2 b) {if (a > b) {a = b; return true;} else return false; } template<typename T> using priority_queue_greater = priority_queue<T, vector<T>, greater<T>>; template<typename T> istream &operator>>(istream& is,vector<T> &v){for(T &in:v)is>>in;return is;} template<typename T1,typename T2> ostream &operator<< (ostream &os, const pair<T1,T2> &p){os << p.first <<" "<<p.second;return os;} ostream &operator<< (ostream &os, const modint1000000007 &m){os << m.val();return os;} istream &operator>> (istream &is, modint1000000007 &m){ll in;is>>in;m=in;return is;} ostream &operator<< (ostream &os, const modint998244353 &m){os << m.val();return os;} istream &operator>> (istream &is, modint998244353 &m){ll in;is>>in;m=in;return is;} template<class... T> void input(T&... a){(cin>> ... >> a);} #ifdef LOCAL template<typename T> ostream &operator<<(ostream &os,const vector<T> &v){os<<"\x1b[32m";rep(i,v.size())os<<v[i]<<(i+1!=v.size()?" ":"");os<<"\x1b[0m";return os;} template<class T> void print(T& a){cout << "\x1b[32m"<< a<< '\n' << "\x1b[0m";} template<class T,class... Ts> void print(const T&a, const Ts&... b){cout << "\x1b[32m" << a;(cout<<...<<(cout<<' ',b));cout<<'\n' << "\x1b[0m";} #else template<typename T> ostream &operator<<(ostream &os,const vector<T> &v){rep(i,v.size())os<<v[i]<<(i+1!=v.size()?" ":"");return os;} template<class T> void print(T& a){cout << a<< '\n';} template<class T,class... Ts> void print(const T&a, const Ts&... b){cout << a;(cout<<...<<(cout<<' ',b));cout<<'\n';} #endif #define VI(v,n) vi v(n); input(v) #define INT(...) int __VA_ARGS__; input(__VA_ARGS__) #define STR(...) string __VA_ARGS__; input(__VA_ARGS__) #define CHAR(...) char __VA_ARGS__; input(__VA_ARGS__) int sign(ll x){return x>0?1:x<0?-1:0;} ll ceil(ll x,ll y){assert(y!=0);if(sign(x)==sign(y))return (x+y-1)/y;return -((-x/y));} ll floor(ll x,ll y){assert(y!=0);if(sign(x)==sign(y))return x/y;if(y<0)x*=-1,y*=-1;return x/y-(x%y<0);} ll abs(ll x,ll y){return abs(x-y);} ll bit(int n){return 1ll<<n;} bool ins(string s,string t){return s.find(t)!=string::npos;} P operator+ (const P &p, const P &q){ return P{p.first+q.first,p.second+q.second};} P operator- (const P &p, const P &q){ return P{p.first-q.first,p.second-q.second};} void yesno(bool ok,string y="Yes",string n="No"){ cout<<(ok?y:n)<<endl;} void YESNO(bool ok,string y="YES",string n="NO"){ cout<<(ok?y:n)<<endl;} int di[]={-1,0,1,0,-1,-1,1,1}; int dj[]={0,1,0,-1,-1,1,-1,1}; const ll INF = 8e18; //using mint = modint1000000007; //using mint = modint998244353; //mint stom(const string &s,int b=10){mint res = 0;for(auto c:s)res *= b,res += c-'0';return res;} int sqr(int x){return x*x;} //fraction struct frac { ll a, b; frac(ll a=0, ll b=1){ if (b == 0) { this->a = (a==0?0:a>0?1:-1); this->b = 0; return; } ll g = gcd(abs(a),abs(b)); if (b < 0) g = -g; this->a = a/g; this->b = b/g; } // frac inv() const { return frac(b,a);} // friend frac ceil(const frac &f) {return frac(::ceil(f.a,f.b),1);} frac operator+(const frac& x) const { return frac(a*x.b + x.a*b, b*x.b);} frac operator-(const frac& x) const { return frac(a*x.b - x.a*b, b*x.b);} frac operator*(const frac& x) const { return frac(a*x.a, b*x.b);} frac operator/(const frac& x) const { return frac(a*x.b, b*x.a);} frac& operator+=(const frac& x) { return *this = *this + x;} frac& operator-=(const frac& x) { return *this = *this - x;} frac& operator*=(const frac& x) { return *this = *this * x;} frac& operator/=(const frac& x) { return *this = *this / x;} bool operator<(const frac& x) const { return a*x.b < x.a*b;} bool operator>(const frac& x) const { return a*x.b > x.a*b;} bool operator==(const frac& x) const { return a == x.a && b == x.b;} bool operator!=(const frac& x) const { return a != x.a || b != x.b;} friend ld sqrt(const frac &x) {return sqrtl(x.a)/sqrtl(x.b);} friend ostream& operator<<(ostream&o,const frac&a){o<<a.a<<"/"<<a.b;return o;} }; class Point { public: ll x,y; Point(ll x_=0,ll y_=0):x(x_),y(y_){} Point operator-()const{return Point(-x,-y);} Point operator+(const Point&p)const{return Point(x+p.x,y+p.y);} Point operator-(const Point&p)const{return Point(x-p.x,y-p.y);} Point &operator+=(const Point &p){return *this = *this + p;} Point &operator-=(const Point &p){return *this = *this - p;} Point operator*(const int k)const{return Point(x*k,y*k);} bool operator<(const Point &p)const {return x==p.x?y<p.y:x<p.x;} bool operator==(const Point&p)const{return x==p.x&&y==p.y;} friend Point rotate_right(const Point &p){return Point(p.y,-p.x);} friend ll dot(const Point &p,const Point &q){return p.x*q.x+p.y*q.y;} friend ll cross(const Point &p,const Point &q){return p.x*q.y-p.y*q.x;} friend ll norm(const Point &p){return p.x*p.x+p.y*p.y;} friend ll distance2(const Point &a,const Point &b){return norm(a-b);} friend bool orthogonal(const Point&a,const Point&b){return dot(a,b)==0;} friend bool parallel(const Point&a,const Point&b){return cross(a,b)==0;} friend istream &operator>>(istream &is, Point &p){is >> p.x >> p.y;return (is);} friend ostream &operator<<(ostream &os, Point &p){os << p.x << " " << p.y;return (os);} }; enum{ONLINE_FRONT=-2,CLOCKWISE=-1,ON_SEGMENT=0,COUNTER_CLOCKWISE=1,ONLINE_BACK=2}; int ccw(const Point &a,const Point &b){ int crs = cross(a,b); return crs>0?COUNTER_CLOCKWISE :crs<0?CLOCKWISE :dot(a,b)<0?ONLINE_BACK :norm(a)<norm(b)?ONLINE_FRONT :ON_SEGMENT; } int ccw(const Point &a,const Point b,const Point c){return ccw(b-a,c-a);} struct Line{ Point p1,p2; Line(Point p1_=Point(),Point p2_=Point()):p1(p1_),p2(p2_){} friend Point vec(const Line &l){return l.p2-l.p1;} friend ll norm(const Line &l){return norm(vec(l));} friend bool orthogonal(const Line&s,const Line&t){return orthogonal(vec(s),vec(t));} friend bool parallel(const Line&s,const Line&t){return parallel(vec(s),vec(t));} friend bool intersect(const Line&s,const Line&t){return !parallel(s,t)||intersect(s,t.p1);} friend bool intersect(const Line&s,const Point&p){return cross(vec(s),p-s.p1)==0;} friend frac distance2(const Line &s,const Point &p){ int a = (s.p2.y-s.p1.y)*p.x+(s.p1.x-s.p2.x)*p.y-s.p1.x*s.p2.y+s.p1.y*s.p2.x; int b = norm(s); return frac(a*a,b); } friend frac distance2(const Line&s,const Line&t){return intersect(s,t)?frac(0):distance2(s,t.p1);} friend int ccw(const Line &l,const Point &p){return ccw(l.p1,l.p2,p);} }; struct Segment:Line{ Segment(Point p1_=Point(),Point p2_=Point()):Line(p1_,p2_){} friend bool intersect(const Segment&s,const Segment&t){return ccw(s,t.p1)*ccw(s,t.p2)<=0&&ccw(t,s.p1)*ccw(t,s.p2)<=0;} friend bool intersect(const Segment&s,const Point&p){return ccw(s,p)==ON_SEGMENT;} friend bool intersect(const Line&s,const Segment&t){return sign(cross(vec(s),t.p1-s.p1))*sign(cross(vec(s),t.p2-s.p1))<=0;} friend bool intersect(const Segment&s,const Line&t){return intersect(t,s);} friend frac distance2(const Segment&s,const Point&p){ return dot(vec(s),p-s.p1)<0?frac(distance2(p,s.p1)) :dot(-vec(s),p-s.p2)<0?frac(distance2(p,s.p2)) :distance2(Line(s),p); } friend frac distance2(const Segment&s,const Segment&t){ return intersect(s,t)?frac(0):min({ distance2(s,t.p1),distance2(s,t.p2), distance2(t,s.p1),distance2(t,s.p2) }); } friend frac distance2(const Line&s,const Segment&t){ return intersect(s,t)?frac(0):min(distance2(s,t.p1),distance2(s,t.p2)); } friend frac distance2(const Segment&s,const Line&t){return distance2(t,s);} }; ll Area2(const vector<Point> &p){ ll res = 0; for(int i=0;i<p.size();i++){ res += cross(p[i],p[(i+1)%p.size()]); } return abs(res); } signed main() { cin.tie(0); ios_base::sync_with_stdio(false); cout << fixed << setprecision(20); INT(n); vector<Point> p(n); rep(i,n){ INT(x,y); p[i] = Point(x,y); } int ans = 0; rep(i,n)rep(j,i){ Line l(p[i],p[j]); pair<frac,Point> v1={-1,{0,0}}; pair<frac,Point> v2={-1,{0,0}}; rep(k,n)if(k!=i&&k!=j){ auto d2 = distance2(l,p[k]); if(ccw(p[i],p[j],p[k])==CLOCKWISE){ if(v1.first<d2){v1={d2,p[k]};} } else { if(v2.first<d2){v2={d2,p[k]};} } } if(v1.first>0&&v2.first>0){ auto p3 = v1.second; auto p4 = v2.second; chmax(ans,Area2({p[i],p3,p[j],p4})); } } print(ans); return 0; }