結果

問題 No.2331 Maximum Quadrilateral
ユーザー kotatsugame
提出日時 2023-05-28 14:37:18
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 3 ms / 2,000 ms
コード長 10,102 bytes
コンパイル時間 1,605 ms
コンパイル使用メモリ 87,292 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-12-27 02:11:24
合計ジャッジ時間 3,225 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 45
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

using namespace std;
#include<iostream>
#include<algorithm>
#include<vector>
using Int=long long;
int sign(Int a){return a>0?1:a<0?-1:0;}
Int sqr(Int a){return a*a;}
struct Rational{
Int a,b;
Rational(Int a_=0):a(a_),b(1){}
Rational(Int a_,Int b_){
Int g=a_,h=b_;
while(h){
Int t=g%h;
g=h;
h=t;
}
a=a_/g;
b=b_/g;
if(b<0)a=-a,b=-b;
}
bool operator<(const Rational&r)const{return a*r.b<r.a*b;}
bool operator==(const Rational&r)const{return a==r.a&&b==r.b;}
};
struct Point{
Int x,y;
Point(Int x_=0,Int y_=0):x(x_),y(y_){}
Point operator-()const{return Point(-x,-y);}
Point operator+(const Point&p)const{return Point(x+p.x,y+p.y);}
Point operator-(const Point&p)const{return Point(x-p.x,y-p.y);}
Point operator*(const Int k)const{return Point(x*k,y*k);}
bool operator<(const Point&p)const{return x==p.x?y<p.y:x<p.x;}
bool operator==(const Point&p)const{return x==p.x&&y==p.y;}
bool operator!=(const Point&p)const{return x!=p.x||y!=p.y;}
};
istream&operator>>(istream&is,Point&p){return is>>p.x>>p.y;}
ostream&operator<<(ostream&os,const Point&p){return os<<p.x<<' '<<p.y;}
struct Line{
Point p1,p2;
Line(Point p1_=Point(),Point p2_=Point()):p1(p1_),p2(p2_){}
};
struct Segment:Line{
Segment(Point p1_=Point(),Point p2_=Point()):Line(p1_,p2_){}
};
struct Circle{
Point o;
Int r;
Circle(Point o_=Point(),Int r_=0):o(o_),r(r_){}
};
using Polygon=vector<Point>;
//function list begin
Point vec(const Line&);
Int norm(const Point&);
Int norm(const Line&);
int argtype(const Point&);//(-pi,0]->-1,(0,pi]->1,(0,0)->0
bool argless(const Point&,const Point&);//sorting points with arg
Int dot(const Point&,const Point&);
Int cross(const Point&,const Point&);
enum{ONLINE_FRONT=-2,CLOCKWISE=-1,ON_SEGMENT=0,COUNTER_CLOCKWISE=1,ONLINE_BACK=2};
int ccw(const Point&,const Point&);
int ccw(const Point&,const Point&,const Point&);
int ccw(const Line&,const Point&);
bool orthogonal(const Point&,const Point&);
bool orthogonal(const Line&,const Line&);
bool parallel(const Point&,const Point&);
bool parallel(const Line&,const Line&);
bool intersect(const Line&,const Point&);
bool intersect(const Line&,const Line&);
bool intersect(const Segment&,const Point&);
bool intersect(const Segment&,const Segment&);
bool intersect(const Line&,const Segment&);
bool intersect(const Segment&,const Line&);
bool intersect(const Circle&,const Point&);
int intersect(const Circle&,const Line&);//overflow, count contacts
int intersect(const Circle&,const Segment&);//overflow, count contacts
bool intersect(const Circle&,const Circle&);
int count_tangent(const Circle&,const Circle&);//count common tangents
Int distance2(const Point&,const Point&);
Rational distance2(const Line&,const Point&);
Rational distance2(const Line&,const Line&);
Rational distance2(const Segment&,const Point&);
Rational distance2(const Segment&,const Segment&);
Rational distance2(const Line&,const Segment&);
Rational distance2(const Segment&,const Line&);
bool is_convex(const Polygon&);
Polygon convex_hull(Polygon,bool=false);
enum{OUT,ON,IN};
int contain(const Polygon&,const Point&);
int contain(const Circle&,const Point&);
int contain(const Circle&,const Segment&);
int convex_contain(const Polygon&,const Point&);//O(log |P|)
Int diameter2(Polygon P);
//function list end
Point vec(const Line&s){return s.p2-s.p1;}
Int norm(const Point&p){return p.x*p.x+p.y*p.y;}
Int norm(const Line&s){return norm(vec(s));}
int argtype(const Point&a){return a.y<0?-1:a.y>0?1:a.x<0?1:a.x>0?-1:0;}
bool argless(const Point&a,const Point&b)
{
int at=argtype(a),bt=argtype(b);
return at!=bt?at<bt:ccw(a,b)>0;
}
Int dot(const Point&a,const Point&b){return a.x*b.x+a.y*b.y;}
Int cross(const Point&a,const Point&b){return a.x*b.y-a.y*b.x;}
int ccw(const Point&a,const Point&b)
{
Int crs=cross(a,b);
return crs>0?COUNTER_CLOCKWISE
:crs<0?CLOCKWISE
:dot(a,b)<0?ONLINE_BACK
:norm(a)<norm(b)?ONLINE_FRONT
:ON_SEGMENT;
}
int ccw(const Point&a,const Point&b,const Point&c){return ccw(b-a,c-a);}
int ccw(const Line&s,const Point&p){return ccw(s.p1,s.p2,p);}
bool orthogonal(const Point&a,const Point&b){return dot(a,b)==0;}
bool orthogonal(const Line&s,const Line&t){return orthogonal(vec(s),vec(t));}
bool parallel(const Point&a,const Point&b){return cross(a,b)==0;}
bool parallel(const Line&s,const Line&t){return parallel(vec(s),vec(t));}
bool intersect(const Line&s,const Point&p){return cross(vec(s),p-s.p1)==0;}
bool intersect(const Line&s,const Line&t){return !parallel(s,t)||intersect(s,t.p1);}
bool intersect(const Segment&s,const Point&p){return ccw(s,p)==ON_SEGMENT;}
bool intersect(const Segment&s,const Segment&t){
return ccw(s,t.p1)*ccw(s,t.p2)<=0&&ccw(t,s.p1)*ccw(t,s.p2)<=0;
}
bool intersect(const Line&s,const Segment&t){
return sign(cross(vec(s),t.p1-s.p1))*sign(cross(vec(s),t.p2-s.p1))<=0;
}
bool intersect(const Segment&s,const Line&t){return intersect(t,s);}
bool intersect(const Circle&c,const Point&p){return distance2(c.o,p)==sqr(c.r);}
int intersect(const Circle&c,const Line&s){
Rational r=distance2(s,c.o);
return r.a==r.b*sqr(c.r)?1:r.a<r.b*sqr(c.r)?2:0;
}
int intersect(const Circle&c,const Segment&s){
Int d1=distance2(c.o,s.p1),d2=distance2(c.o,s.p2);
int t=intersect(c,Line(s));
return t==0?0
:d1<sqr(c.r)&&d2<sqr(c.r)?0
:(d1<sqr(c.r)&&d2>=sqr(c.r))||(d1>=sqr(c.r)&&d2<sqr(c.r))?1
:dot(s.p2-s.p1,c.o-s.p1)>=0&&dot(s.p1-s.p2,c.o-s.p2)>=0?t==1?1:2
:0;
}
bool intersect(const Circle&a,const Circle&b){
int c=count_tangent(a,b);
return 1<=c&&c<=3;
}
int count_tangent(const Circle&a,const Circle&b){
Int d=distance2(a.o,b.o);
return d==sqr(a.r+b.r)?3:d>sqr(a.r+b.r)?4:d==sqr(a.r-b.r)?1:d>sqr(a.r-b.r)?2:0;
}
Int distance2(const Point&a,const Point&b){return norm(a-b);}
Rational distance2(const Line&s,const Point&p){
Int A=(s.p2.y-s.p1.y)*p.x+(s.p1.x-s.p2.x)*p.y-s.p1.x*s.p2.y+s.p1.y*s.p2.x;
Int B=norm(s);
return Rational(A*A,B);
}
Rational distance2(const Line&s,const Line&t){
return intersect(s,t)?Rational(0):distance2(s,t.p1);
}
Rational distance2(const Segment&s,const Point&p){
return dot(vec(s),p-s.p1)<0?Rational(distance2(p,s.p1))
:dot(-vec(s),p-s.p2)<0?Rational(distance2(p,s.p2))
:distance2(Line(s),p);
}
Rational distance2(const Segment&s,const Segment&t){
return intersect(s,t)?Rational(0):min({
distance2(s,t.p1),distance2(s,t.p2),
distance2(t,s.p1),distance2(t,s.p2)
});
}
Rational distance2(const Line&s,const Segment&t){
return intersect(s,t)?Rational(0):min(distance2(s,t.p1),distance2(s,t.p2));
}
Rational distance2(const Segment&s,const Line&t){return distance2(t,s);}
bool is_convex(const Polygon&P){
for(int i=0;i<P.size();i++)
if(ccw(P[i],P[(i+1)%P.size()],P[(i+2)%P.size()])==CLOCKWISE)return false;
return true;
}
Polygon convex_hull(Polygon P,bool ONSEG){
if(P.size()<=2)return P;
sort(P.begin(),P.end());
Polygon ret(2*P.size());
int k=0,t;
if(ONSEG){
for(const Point&p:P){
while(k>=2&&ccw(ret[k-2],ret[k-1],p)==CLOCKWISE)k--;
ret[k++]=p;
}
t=k;
for(int i=P.size()-2;i>=0;i--){
while(k>=t+1&&ccw(ret[k-2],ret[k-1],P[i])==CLOCKWISE)k--;
ret[k++]=P[i];
}
}
else{
for(const Point&p:P){
while(k>=2&&ccw(ret[k-2],ret[k-1],p)!=COUNTER_CLOCKWISE)k--;
ret[k++]=p;
}
t=k;
for(int i=P.size()-2;i>=0;i--){
while(k>=t+1&&ccw(ret[k-2],ret[k-1],P[i])!=COUNTER_CLOCKWISE)k--;
ret[k++]=P[i];
}
}
ret.resize(k-1);
int mi=0;
for(int i=1;i<k-1;i++)
if(ret[mi].y==ret[i].y?ret[mi].x>ret[i].x:ret[mi].y>ret[i].y)mi=i;
rotate(ret.begin(),ret.begin()+mi,ret.end());
return ret;
}
int contain(const Polygon&P,const Point&p){
bool in=false;
for(int i=0;i<P.size();i++){
Segment s(P[i],P[(i+1)%P.size()]);
if(intersect(s,p))return ON;
else{
Point a=s.p1-p,b=s.p2-p;
if(a.y>b.y)swap(a,b);
if(a.y<=0&&0<b.y&&cross(a,b)>0)in=!in;
}
}
return in?IN:OUT;
}
int contain(const Circle&c,const Point&p){
Int d=distance2(c.o,p);
return d==sqr(c.r)?ON:d<sqr(c.r)?IN:OUT;
}
int contain(const Circle&c,const Segment&s){
Int d1=distance2(c.o,s.p1),d2=distance2(c.o,s.p2);
return d1<=sqr(c.r)&&d2<=sqr(c.r)?d1==sqr(c.r)||d2==sqr(c.r)?ON:IN:OUT;
}
int convex_contain(const Polygon&P,const Point&p)
{
if(P[0]==p)return ON;
int l=0,r=P.size();
while(r-l>1)
{
int mid=(l+r)/2;
int t=ccw(P[0],P[mid],p);
if(t==CLOCKWISE)r=mid;
else l=mid;
}
if(r==1)return OUT;
if(l+1==P.size())
{
if(intersect(Segment(P[0],P[P.size()-1]),p))return ON;
else return OUT;
}
if(l==1&&intersect(Segment(P[0],P[1]),p))return ON;
Polygon tmp={P[0],P[l],P[l+1]};
int ret=contain(tmp,p);
if(ret==ON)
{
if(intersect(Segment(P[l],P[l+1]),p))return ON;
else return IN;
}
return ret;
}
Int diameter2(Polygon P){
if(!is_convex(P))P=convex_hull(P);
int mi=0,Mi=0;
for(int i=1;i<P.size();i++){
if(P[i].x<P[mi].x)mi=i;
if(P[i].x>P[Mi].x)Mi=i;
}
Int ret=0;
int sm=mi,sM=Mi;
while(mi!=sM||Mi!=sm){
ret=max(ret,norm(P[mi]-P[Mi]));
if(cross(P[(mi+1)%P.size()]-P[mi],P[(Mi+1)%P.size()]-P[Mi])<0)mi=(mi+1)%P.size();
else Mi=(Mi+1)%P.size();
}
return ret;
}
Int area2(Polygon P)
{
Int ret=0;
for(int i=0;i<P.size();i++)ret+=cross(P[i],P[(i+1)%P.size()]);
return ret;
}
#include<cassert>
int N;
Int C[400][400];
Int dp[3][400];
int main()
{
cin>>N;
Polygon PP(N);
for(int i=0;i<N;i++)cin>>PP[i];
Polygon P=convex_hull(PP);
N=P.size();
if(N<4)
{
assert(N==3);
Int ans=-1e18;
for(int i=0;i<PP.size();i++)if(PP[i]!=P[0]&&PP[i]!=P[1]&&PP[i]!=P[2])
{
{
Polygon tmp=(Polygon){P[0],P[1],P[2],PP[i]};
ans=max(ans,area2(tmp));
}
{
Polygon tmp={P[0],P[1],PP[i],P[2]};
ans=max(ans,area2(tmp));
}
{
Polygon tmp={P[0],PP[i],P[1],P[2]};
ans=max(ans,area2(tmp));
}
}
cout<<ans<<endl;
return 0;
}
assert(N>=4);
for(int i=0;i<N;i++)for(int j=0;j<N;j++)C[i][j]=cross(P[i],P[j]);
Int ans=-1e18;
for(int s=0;s<N;s++)
{
for(int t=s+1;t<N;t++)dp[0][t]=C[s][t];
for(int k=0;k<2;k++)
{
for(int j=s+1;j<N;j++)dp[k+1][j]=-1e18;
for(int i=s+1;i<N;i++)for(int j=i+1;j<N;j++)
{
dp[k+1][j]=max(dp[k+1][j],dp[k][i]+C[i][j]);
}
}
for(int i=s+1;i<N;i++)ans=max(ans,dp[2][i]+C[i][s]);
}
cout<<ans<<endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0