結果

問題 No.2327 Inversion Sum
ユーザー torisasami4torisasami4
提出日時 2023-05-28 15:15:59
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
RE  
実行時間 -
コード長 9,248 bytes
コンパイル時間 3,238 ms
コンパイル使用メモリ 245,312 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-06-08 07:20:09
合計ジャッジ時間 4,249 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 5 ms
6,812 KB
testcase_01 AC 25 ms
6,940 KB
testcase_02 AC 19 ms
6,940 KB
testcase_03 AC 4 ms
6,940 KB
testcase_04 AC 31 ms
6,944 KB
testcase_05 AC 5 ms
6,940 KB
testcase_06 AC 22 ms
6,944 KB
testcase_07 AC 13 ms
6,940 KB
testcase_08 AC 5 ms
6,940 KB
testcase_09 AC 26 ms
6,944 KB
testcase_10 AC 9 ms
6,940 KB
testcase_11 AC 2 ms
6,944 KB
testcase_12 AC 2 ms
6,940 KB
testcase_13 AC 2 ms
6,940 KB
testcase_14 AC 19 ms
6,944 KB
testcase_15 AC 30 ms
6,944 KB
testcase_16 AC 11 ms
6,944 KB
testcase_17 AC 3 ms
6,944 KB
testcase_18 AC 5 ms
6,940 KB
testcase_19 AC 8 ms
6,944 KB
testcase_20 AC 2 ms
6,944 KB
testcase_21 AC 2 ms
6,940 KB
testcase_22 AC 1 ms
6,940 KB
testcase_23 AC 2 ms
6,940 KB
testcase_24 RE -
testcase_25 AC 2 ms
6,940 KB
testcase_26 AC 2 ms
6,940 KB
testcase_27 AC 2 ms
6,944 KB
testcase_28 AC 2 ms
6,944 KB
testcase_29 AC 2 ms
6,944 KB
testcase_30 AC 2 ms
6,940 KB
testcase_31 AC 2 ms
6,944 KB
testcase_32 AC 2 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// #define _GLIBCXX_DEBUG
#pragma GCC optimize("O2,no-stack-protector,unroll-loops,fast-math")
#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < int(n); i++)
#define per(i, n) for (int i = (n)-1; 0 <= i; i--)
#define rep2(i, l, r) for (int i = (l); i < int(r); i++)
#define per2(i, l, r) for (int i = (r)-1; int(l) <= i; i--)
#define each(e, v) for (auto& e : v)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
template <typename T> void print(const vector<T>& v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
    if (v.empty()) cout << '\n';
}
using ll = long long;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
template <typename T> bool chmax(T& x, const T& y) {
    return (x < y) ? (x = y, true) : false;
}
template <typename T> bool chmin(T& x, const T& y) {
    return (x > y) ? (x = y, true) : false;
}
template <class T>
using minheap = std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <class T> using maxheap = std::priority_queue<T>;
template <typename T> int lb(const vector<T>& v, T x) {
    return lower_bound(begin(v), end(v), x) - begin(v);
}
template <typename T> int ub(const vector<T>& v, T x) {
    return upper_bound(begin(v), end(v), x) - begin(v);
}
template <typename T> void rearrange(vector<T>& v) {
    sort(begin(v), end(v));
    v.erase(unique(begin(v), end(v)), end(v));
}

// __int128_t gcd(__int128_t a, __int128_t b) {
//     if (a == 0)
//         return b;
//     if (b == 0)
//         return a;
//     __int128_t cnt = a % b;
//     while (cnt != 0) {
//         a = b;
//         b = cnt;
//         cnt = a % b;
//     }
//     return b;
// }

long long extGCD(long long a, long long b, long long& x, long long& y) {
    if (b == 0) {
        x = 1;
        y = 0;
        return a;
    }
    long long d = extGCD(b, a % b, y, x);
    y -= a / b * x;
    return d;
}

struct UnionFind {
    vector<int> data;
    int num;

    UnionFind(int sz) {
        data.assign(sz, -1);
        num = sz;
    }

    bool unite(int x, int y) {
        x = find(x), y = find(y);
        if (x == y) return (false);
        if (data[x] > data[y]) swap(x, y);
        data[x] += data[y];
        data[y] = x;
        num--;
        return (true);
    }

    int find(int k) {
        if (data[k] < 0) return (k);
        return (data[k] = find(data[k]));
    }

    int size(int k) { return (-data[find(k)]); }

    bool same(int x, int y) { return find(x) == find(y); }

    int operator[](int k) { return find(k); }
};

template <int mod> struct Mod_Int {
    int x;

    Mod_Int() : x(0) {}

    Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

    static int get_mod() { return mod; }

    Mod_Int& operator+=(const Mod_Int& p) {
        if ((x += p.x) >= mod) x -= mod;
        return *this;
    }

    Mod_Int& operator-=(const Mod_Int& p) {
        if ((x += mod - p.x) >= mod) x -= mod;
        return *this;
    }

    Mod_Int& operator*=(const Mod_Int& p) {
        x = (int)(1LL * x * p.x % mod);
        return *this;
    }

    Mod_Int& operator/=(const Mod_Int& p) {
        *this *= p.inverse();
        return *this;
    }

    Mod_Int& operator++() { return *this += Mod_Int(1); }

    Mod_Int operator++(int) {
        Mod_Int tmp = *this;
        ++*this;
        return tmp;
    }

    Mod_Int& operator--() { return *this -= Mod_Int(1); }

    Mod_Int operator--(int) {
        Mod_Int tmp = *this;
        --*this;
        return tmp;
    }

    Mod_Int operator-() const { return Mod_Int(-x); }

    Mod_Int operator+(const Mod_Int& p) const { return Mod_Int(*this) += p; }

    Mod_Int operator-(const Mod_Int& p) const { return Mod_Int(*this) -= p; }

    Mod_Int operator*(const Mod_Int& p) const { return Mod_Int(*this) *= p; }

    Mod_Int operator/(const Mod_Int& p) const { return Mod_Int(*this) /= p; }

    bool operator==(const Mod_Int& p) const { return x == p.x; }

    bool operator!=(const Mod_Int& p) const { return x != p.x; }

    Mod_Int inverse() const {
        assert(*this != Mod_Int(0));
        return pow(mod - 2);
    }

    Mod_Int pow(long long k) const {
        Mod_Int now = *this, ret = 1;
        for (; k > 0; k >>= 1, now *= now) {
            if (k & 1) ret *= now;
        }
        return ret;
    }

    friend ostream& operator<<(ostream& os, const Mod_Int& p) {
        return os << p.x;
    }

    friend istream& operator>>(istream& is, Mod_Int& p) {
        long long a;
        is >> a;
        p = Mod_Int<mod>(a);
        return is;
    }
};

ll mpow2(ll x, ll n, ll mod) {
    ll ans = 1;
    x %= mod;
    while (n != 0) {
        if (n & 1) ans = ans * x % mod;
        x = x * x % mod;
        n = n >> 1;
    }
    ans %= mod;
    return ans;
}

template <typename T> T modinv(T a, const T& m) {
    T b = m, u = 1, v = 0;
    while (b > 0) {
        T t = a / b;
        swap(a -= t * b, b);
        swap(u -= t * v, v);
    }
    return u >= 0 ? u % m : (m - (-u) % m) % m;
}

ll divide_int(ll a, ll b) {
    if (b < 0) a = -a, b = -b;
    return (a >= 0 ? a / b : (a - b + 1) / b);
}

// const int MOD = 1000000007;
const int MOD = 998244353;
using mint = Mod_Int<MOD>;

mint mpow(mint x, ll n) {
    bool rev = n < 0;
    n = abs(n);
    mint ans = 1;
    while (n != 0) {
        if (n & 1) ans *= x;
        x *= x;
        n = n >> 1;
    }
    return (rev ? ans.inverse() : ans);
}

// ----- library -------
template <typename T>
struct Binary_Indexed_Tree {
    vector<T> bit;
    const int n;

    Binary_Indexed_Tree(const vector<T> &v) : n((int)v.size()) {
        bit.resize(n + 1);
        copy(begin(v), end(v), begin(bit) + 1);
        for (int a = 2; a <= n; a <<= 1) {
            for (int b = a; b <= n; b += a) bit[b] += bit[b - a / 2];
        }
    }

    Binary_Indexed_Tree(int n, const T &x) : Binary_Indexed_Tree(vector<T>(n, x)) {}

    void add(int i, const T &x) {
        for (i++; i <= n; i += (i & -i)) bit[i] += x;
    }

    void change(int i, const T &x) { add(i, x - query(i, i + 1)); }

    T sum(int i) const {
        i = min(i, n);
        if (i <= 0) return 0;
        T ret = 0;
        for (; i > 0; i -= (i & -i)) ret += bit[i];
        return ret;
    }

    T query(int l, int r) const {
        l = max(l, 0), r = min(r, n);
        if (l >= r) return 0;
        return sum(r) - sum(l);
    }

    T operator[](int i) const { return query(i, i + 1); }

    // v[0]+...+v[r] >= x を満たす最小の r (なければ n)
    int lower_bound(T x) const {
        int ret = 0;
        for (int k = 31 - __builtin_clz(n); k >= 0; k--) {
            if (ret + (1 << k) <= n && bit[ret + (1 << k)] < x) x -= bit[ret += (1 << k)];
        }
        return ret;
    }

    // v[0]+...+v[r] > x を満たす最小の r (なければ n)
    int upper_bound(T x) const {
        int ret = 0;
        for (int k = 31 - __builtin_clz(n); k >= 0; k--) {
            if (ret + (1 << k) <= n && bit[ret + (1 << k)] <= x) x -= bit[ret += (1 << k)];
        }
        return ret;
    }
};

template <typename T>
long long inversion_number(const vector<T> &a) {
    int n = a.size();
    vector<int> v(n);
    iota(begin(v), end(v), 0);
    sort(begin(v), end(v), [&](int i, int j) {
        if (a[i] != a[j]) return a[i] < a[j];
        return i < j;
    });
    Binary_Indexed_Tree<int> bit(n, 0);
    long long ret = 0;
    for (int i = 0; i < n; i++) {
        ret += bit.query(v[i] + 1, n);
        bit.add(v[i], 1);
    }
    return ret;
}

// a を b に変換するのに必要な最小バブルソート回数
template <typename T>
long long inversion_number(const vector<T> &a, const vector<T> &b) {
    int n = a.size();
    assert(b.size() == n);
    vector<int> u(n), v(n);
    iota(begin(u), end(u), 0);
    sort(begin(u), end(u), [&](int i, int j) {
        if (a[i] != a[j]) return a[i] < a[j];
        return i < j;
    });
    iota(begin(v), end(v), 0);
    sort(begin(v), end(v), [&](int i, int j) {
        if (b[i] != b[j]) return b[i] < b[j];
        return i < j;
    });
    vector<int> w(n);
    for (int i = 0; i < n; i++) {
        if (a[u[i]] != b[v[i]]) return -1;
        w[v[i]] = u[i];
    }
    Binary_Indexed_Tree<int> bit(n, 0);
    long long ret = 0;
    for (int i = 0; i < n; i++) {
        ret += bit.query(w[i] + 1, n);
        bit.add(w[i], 1);
    }
    return ret;
}
// ----- library -------

int main() {
    ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    cout << fixed << setprecision(15);

    int n, m;
    cin >> n >> m;
    vector<int> a(m), p(m);
    rep(i, m) cin >> a[i] >> p[i], a[i]--, p[i]--;
    vector<int> b(n, 1), q(n, 1);
    rep(i, m) b[a[i]] = 0, q[p[i]] = 0;
    rep(i, n - 1) b[i + 1] += b[i], q[i + 1] += q[i];
    mint ans = 0;
    mint f = 1;
    int r = b[n - 1];
    rep(i, r) f *= i + 1;
    ans += f / 2 * r * (r - 1) / 2;
    rep(i, m) ans += (f * (r - q[p[i]]) * b[a[i]] + f * q[p[i]] * (r - b[a[i]])) / r;
    vector<pii> v;
    rep(i, m) v.eb(a[i], p[i]);
    sort(all(v));
    rep(i, m) p[i] = v[i].second;
    ans += f * inversion_number(p);
    cout << ans << endl;
}
0