結果
問題 | No.2327 Inversion Sum |
ユーザー | torisasami4 |
提出日時 | 2023-05-28 15:15:59 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
RE
|
実行時間 | - |
コード長 | 9,248 bytes |
コンパイル時間 | 3,238 ms |
コンパイル使用メモリ | 245,312 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-06-08 07:20:09 |
合計ジャッジ時間 | 4,249 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 5 ms
6,812 KB |
testcase_01 | AC | 25 ms
6,940 KB |
testcase_02 | AC | 19 ms
6,940 KB |
testcase_03 | AC | 4 ms
6,940 KB |
testcase_04 | AC | 31 ms
6,944 KB |
testcase_05 | AC | 5 ms
6,940 KB |
testcase_06 | AC | 22 ms
6,944 KB |
testcase_07 | AC | 13 ms
6,940 KB |
testcase_08 | AC | 5 ms
6,940 KB |
testcase_09 | AC | 26 ms
6,944 KB |
testcase_10 | AC | 9 ms
6,940 KB |
testcase_11 | AC | 2 ms
6,944 KB |
testcase_12 | AC | 2 ms
6,940 KB |
testcase_13 | AC | 2 ms
6,940 KB |
testcase_14 | AC | 19 ms
6,944 KB |
testcase_15 | AC | 30 ms
6,944 KB |
testcase_16 | AC | 11 ms
6,944 KB |
testcase_17 | AC | 3 ms
6,944 KB |
testcase_18 | AC | 5 ms
6,940 KB |
testcase_19 | AC | 8 ms
6,944 KB |
testcase_20 | AC | 2 ms
6,944 KB |
testcase_21 | AC | 2 ms
6,940 KB |
testcase_22 | AC | 1 ms
6,940 KB |
testcase_23 | AC | 2 ms
6,940 KB |
testcase_24 | RE | - |
testcase_25 | AC | 2 ms
6,940 KB |
testcase_26 | AC | 2 ms
6,940 KB |
testcase_27 | AC | 2 ms
6,944 KB |
testcase_28 | AC | 2 ms
6,944 KB |
testcase_29 | AC | 2 ms
6,944 KB |
testcase_30 | AC | 2 ms
6,940 KB |
testcase_31 | AC | 2 ms
6,944 KB |
testcase_32 | AC | 2 ms
6,940 KB |
ソースコード
// #define _GLIBCXX_DEBUG #pragma GCC optimize("O2,no-stack-protector,unroll-loops,fast-math") #include <bits/stdc++.h> using namespace std; #define rep(i, n) for (int i = 0; i < int(n); i++) #define per(i, n) for (int i = (n)-1; 0 <= i; i--) #define rep2(i, l, r) for (int i = (l); i < int(r); i++) #define per2(i, l, r) for (int i = (r)-1; int(l) <= i; i--) #define each(e, v) for (auto& e : v) #define MM << " " << #define pb push_back #define eb emplace_back #define all(x) begin(x), end(x) #define rall(x) rbegin(x), rend(x) #define sz(x) (int)x.size() template <typename T> void print(const vector<T>& v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' '); if (v.empty()) cout << '\n'; } using ll = long long; using pii = pair<int, int>; using pll = pair<ll, ll>; template <typename T> bool chmax(T& x, const T& y) { return (x < y) ? (x = y, true) : false; } template <typename T> bool chmin(T& x, const T& y) { return (x > y) ? (x = y, true) : false; } template <class T> using minheap = std::priority_queue<T, std::vector<T>, std::greater<T>>; template <class T> using maxheap = std::priority_queue<T>; template <typename T> int lb(const vector<T>& v, T x) { return lower_bound(begin(v), end(v), x) - begin(v); } template <typename T> int ub(const vector<T>& v, T x) { return upper_bound(begin(v), end(v), x) - begin(v); } template <typename T> void rearrange(vector<T>& v) { sort(begin(v), end(v)); v.erase(unique(begin(v), end(v)), end(v)); } // __int128_t gcd(__int128_t a, __int128_t b) { // if (a == 0) // return b; // if (b == 0) // return a; // __int128_t cnt = a % b; // while (cnt != 0) { // a = b; // b = cnt; // cnt = a % b; // } // return b; // } long long extGCD(long long a, long long b, long long& x, long long& y) { if (b == 0) { x = 1; y = 0; return a; } long long d = extGCD(b, a % b, y, x); y -= a / b * x; return d; } struct UnionFind { vector<int> data; int num; UnionFind(int sz) { data.assign(sz, -1); num = sz; } bool unite(int x, int y) { x = find(x), y = find(y); if (x == y) return (false); if (data[x] > data[y]) swap(x, y); data[x] += data[y]; data[y] = x; num--; return (true); } int find(int k) { if (data[k] < 0) return (k); return (data[k] = find(data[k])); } int size(int k) { return (-data[find(k)]); } bool same(int x, int y) { return find(x) == find(y); } int operator[](int k) { return find(k); } }; template <int mod> struct Mod_Int { int x; Mod_Int() : x(0) {} Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} static int get_mod() { return mod; } Mod_Int& operator+=(const Mod_Int& p) { if ((x += p.x) >= mod) x -= mod; return *this; } Mod_Int& operator-=(const Mod_Int& p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } Mod_Int& operator*=(const Mod_Int& p) { x = (int)(1LL * x * p.x % mod); return *this; } Mod_Int& operator/=(const Mod_Int& p) { *this *= p.inverse(); return *this; } Mod_Int& operator++() { return *this += Mod_Int(1); } Mod_Int operator++(int) { Mod_Int tmp = *this; ++*this; return tmp; } Mod_Int& operator--() { return *this -= Mod_Int(1); } Mod_Int operator--(int) { Mod_Int tmp = *this; --*this; return tmp; } Mod_Int operator-() const { return Mod_Int(-x); } Mod_Int operator+(const Mod_Int& p) const { return Mod_Int(*this) += p; } Mod_Int operator-(const Mod_Int& p) const { return Mod_Int(*this) -= p; } Mod_Int operator*(const Mod_Int& p) const { return Mod_Int(*this) *= p; } Mod_Int operator/(const Mod_Int& p) const { return Mod_Int(*this) /= p; } bool operator==(const Mod_Int& p) const { return x == p.x; } bool operator!=(const Mod_Int& p) const { return x != p.x; } Mod_Int inverse() const { assert(*this != Mod_Int(0)); return pow(mod - 2); } Mod_Int pow(long long k) const { Mod_Int now = *this, ret = 1; for (; k > 0; k >>= 1, now *= now) { if (k & 1) ret *= now; } return ret; } friend ostream& operator<<(ostream& os, const Mod_Int& p) { return os << p.x; } friend istream& operator>>(istream& is, Mod_Int& p) { long long a; is >> a; p = Mod_Int<mod>(a); return is; } }; ll mpow2(ll x, ll n, ll mod) { ll ans = 1; x %= mod; while (n != 0) { if (n & 1) ans = ans * x % mod; x = x * x % mod; n = n >> 1; } ans %= mod; return ans; } template <typename T> T modinv(T a, const T& m) { T b = m, u = 1, v = 0; while (b > 0) { T t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return u >= 0 ? u % m : (m - (-u) % m) % m; } ll divide_int(ll a, ll b) { if (b < 0) a = -a, b = -b; return (a >= 0 ? a / b : (a - b + 1) / b); } // const int MOD = 1000000007; const int MOD = 998244353; using mint = Mod_Int<MOD>; mint mpow(mint x, ll n) { bool rev = n < 0; n = abs(n); mint ans = 1; while (n != 0) { if (n & 1) ans *= x; x *= x; n = n >> 1; } return (rev ? ans.inverse() : ans); } // ----- library ------- template <typename T> struct Binary_Indexed_Tree { vector<T> bit; const int n; Binary_Indexed_Tree(const vector<T> &v) : n((int)v.size()) { bit.resize(n + 1); copy(begin(v), end(v), begin(bit) + 1); for (int a = 2; a <= n; a <<= 1) { for (int b = a; b <= n; b += a) bit[b] += bit[b - a / 2]; } } Binary_Indexed_Tree(int n, const T &x) : Binary_Indexed_Tree(vector<T>(n, x)) {} void add(int i, const T &x) { for (i++; i <= n; i += (i & -i)) bit[i] += x; } void change(int i, const T &x) { add(i, x - query(i, i + 1)); } T sum(int i) const { i = min(i, n); if (i <= 0) return 0; T ret = 0; for (; i > 0; i -= (i & -i)) ret += bit[i]; return ret; } T query(int l, int r) const { l = max(l, 0), r = min(r, n); if (l >= r) return 0; return sum(r) - sum(l); } T operator[](int i) const { return query(i, i + 1); } // v[0]+...+v[r] >= x を満たす最小の r (なければ n) int lower_bound(T x) const { int ret = 0; for (int k = 31 - __builtin_clz(n); k >= 0; k--) { if (ret + (1 << k) <= n && bit[ret + (1 << k)] < x) x -= bit[ret += (1 << k)]; } return ret; } // v[0]+...+v[r] > x を満たす最小の r (なければ n) int upper_bound(T x) const { int ret = 0; for (int k = 31 - __builtin_clz(n); k >= 0; k--) { if (ret + (1 << k) <= n && bit[ret + (1 << k)] <= x) x -= bit[ret += (1 << k)]; } return ret; } }; template <typename T> long long inversion_number(const vector<T> &a) { int n = a.size(); vector<int> v(n); iota(begin(v), end(v), 0); sort(begin(v), end(v), [&](int i, int j) { if (a[i] != a[j]) return a[i] < a[j]; return i < j; }); Binary_Indexed_Tree<int> bit(n, 0); long long ret = 0; for (int i = 0; i < n; i++) { ret += bit.query(v[i] + 1, n); bit.add(v[i], 1); } return ret; } // a を b に変換するのに必要な最小バブルソート回数 template <typename T> long long inversion_number(const vector<T> &a, const vector<T> &b) { int n = a.size(); assert(b.size() == n); vector<int> u(n), v(n); iota(begin(u), end(u), 0); sort(begin(u), end(u), [&](int i, int j) { if (a[i] != a[j]) return a[i] < a[j]; return i < j; }); iota(begin(v), end(v), 0); sort(begin(v), end(v), [&](int i, int j) { if (b[i] != b[j]) return b[i] < b[j]; return i < j; }); vector<int> w(n); for (int i = 0; i < n; i++) { if (a[u[i]] != b[v[i]]) return -1; w[v[i]] = u[i]; } Binary_Indexed_Tree<int> bit(n, 0); long long ret = 0; for (int i = 0; i < n; i++) { ret += bit.query(w[i] + 1, n); bit.add(w[i], 1); } return ret; } // ----- library ------- int main() { ios::sync_with_stdio(false); std::cin.tie(nullptr); cout << fixed << setprecision(15); int n, m; cin >> n >> m; vector<int> a(m), p(m); rep(i, m) cin >> a[i] >> p[i], a[i]--, p[i]--; vector<int> b(n, 1), q(n, 1); rep(i, m) b[a[i]] = 0, q[p[i]] = 0; rep(i, n - 1) b[i + 1] += b[i], q[i + 1] += q[i]; mint ans = 0; mint f = 1; int r = b[n - 1]; rep(i, r) f *= i + 1; ans += f / 2 * r * (r - 1) / 2; rep(i, m) ans += (f * (r - q[p[i]]) * b[a[i]] + f * q[p[i]] * (r - b[a[i]])) / r; vector<pii> v; rep(i, m) v.eb(a[i], p[i]); sort(all(v)); rep(i, m) p[i] = v[i].second; ans += f * inversion_number(p); cout << ans << endl; }