結果

問題 No.2330 Eat Slime
ユーザー t98slider
提出日時 2023-05-28 15:30:26
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 280 ms / 4,000 ms
コード長 14,236 bytes
コンパイル時間 4,264 ms
コンパイル使用メモリ 210,080 KB
実行使用メモリ 26,916 KB
最終ジャッジ日時 2024-12-27 07:05:50
合計ジャッジ時間 10,343 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 30
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
template<const unsigned int MOD> struct prime_modint {
using mint = prime_modint;
unsigned int v;
prime_modint() : v(0) {}
prime_modint(unsigned int a) { a %= MOD; v = a; }
prime_modint(unsigned long long a) { a %= MOD; v = a; }
prime_modint(int a) { a %= (int)(MOD); if(a < 0)a += MOD; v = a; }
prime_modint(long long a) { a %= (int)(MOD); if(a < 0)a += MOD; v = a; }
static constexpr int mod() { return MOD; }
mint& operator++() {v++; if(v == MOD)v = 0; return *this;}
mint& operator--() {if(v == 0)v = MOD; v--; return *this;}
mint operator++(int) { mint result = *this; ++*this; return result; }
mint operator--(int) { mint result = *this; --*this; return result; }
mint& operator+=(const mint& rhs) { v += rhs.v; if(v >= MOD) v -= MOD; return *this; }
mint& operator-=(const mint& rhs) { if(v < rhs.v) v += MOD; v -= rhs.v; return *this; }
mint& operator*=(const mint& rhs) {
v = (unsigned int)((unsigned long long)(v) * rhs.v % MOD);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint r = 1, x = *this;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const { assert(v); return pow(MOD - 2); }
friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; }
friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; }
friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; }
friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; }
friend bool operator==(const mint& lhs, const mint& rhs) { return (lhs.v == rhs.v); }
friend bool operator!=(const mint& lhs, const mint& rhs) { return (lhs.v != rhs.v); }
friend std::ostream& operator << (std::ostream &os, const mint& rhs) noexcept { return os << rhs.v; }
};
//using mint = prime_modint<1000000007>;
using mint = prime_modint<998244353>;
constexpr int bsf_constexpr(unsigned int n) {
int x = 0;
while (!(n & (1 << x))) x++;
return x;
}
template<class mint> struct fft_info {
const int g = primitive_root(mint::mod());
static constexpr int rank2 = bsf_constexpr(mint::mod() - 1);
std::array<mint, rank2 + 1> root; // root[i]^(2^i) == 1
std::array<mint, rank2 + 1> iroot; // root[i] * iroot[i] == 1
std::array<mint, std::max(0, rank2 - 2 + 1)> rate2;
std::array<mint, std::max(0, rank2 - 2 + 1)> irate2;
std::array<mint, std::max(0, rank2 - 3 + 1)> rate3;
std::array<mint, std::max(0, rank2 - 3 + 1)> irate3;
fft_info() {
root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2);
iroot[rank2] = root[rank2].inv();
for (int i = rank2 - 1; i >= 0; i--) {
root[i] = root[i + 1] * root[i + 1];
iroot[i] = iroot[i + 1] * iroot[i + 1];
}
{
mint prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 2; i++) {
rate2[i] = root[i + 2] * prod;
irate2[i] = iroot[i + 2] * iprod;
prod *= iroot[i + 2];
iprod *= root[i + 2];
}
}
{
mint prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 3; i++) {
rate3[i] = root[i + 3] * prod;
irate3[i] = iroot[i + 3] * iprod;
prod *= iroot[i + 3];
iprod *= root[i + 3];
}
}
}
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
int bsf(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanForward(&index, n);
return index;
#else
return __builtin_ctz(n);
#endif
}
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
constexpr int primitive_root(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) x /= i;
}
}
if (x > 1) divs[cnt++] = x;
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
void butterfly(std::vector<mint>& a) {
int n = int(a.size());
int h = ceil_pow2(n);
int len = 0; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed
while (len < h) {
if (h - len == 1) {
int p = 1 << (h - len - 1);
mint rot = 1;
for (int s = 0; s < (1 << len); s++) {
int offset = s << (h - len);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p] * rot;
a[i + offset] = l + r;
a[i + offset + p] = l - r;
}
if (s + 1 != (1 << len)) rot *= rate2[bsf(~(unsigned int)(s))];
}
len++;
} else {
// 4-base
int p = 1 << (h - len - 2);
mint rot = 1, imag = root[2];
for (int s = 0; s < (1 << len); s++) {
mint rot2 = rot * rot;
mint rot3 = rot2 * rot;
int offset = s << (h - len);
for (int i = 0; i < p; i++) {
auto mod2 = 1ULL * mint::mod() * mint::mod();
auto a0 = 1ULL * a[i + offset].v;
auto a1 = 1ULL * a[i + offset + p].v * rot.v;
auto a2 = 1ULL * a[i + offset + 2 * p].v * rot2.v;
auto a3 = 1ULL * a[i + offset + 3 * p].v * rot3.v;
auto a1na3imag = 1ULL * mint(a1 + mod2 - a3).v * imag.v;
auto na2 = mod2 - a2;
a[i + offset] = a0 + a2 + a1 + a3;
a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));
a[i + offset + 2 * p] = a0 + na2 + a1na3imag;
a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);
}
if (s + 1 != (1 << len))
rot *= rate3[bsf(~(unsigned int)(s))];
}
len += 2;
}
}
}
void butterfly_inv(std::vector<mint>& a) {
int n = int(a.size());
int h = ceil_pow2(n);
int len = h;
while (len) {
if (len == 1) {
int p = 1 << (h - len);
mint irot = 1;
for (int s = 0; s < (1 << (len - 1)); s++) {
int offset = s << (h - len + 1);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p];
a[i + offset] = l + r;
a[i + offset + p] = (unsigned long long)(mint::mod() + l.v - r.v) * irot.v;
}
if (s + 1 != (1 << (len - 1))) irot *= irate2[bsf(~(unsigned int)(s))];
}
len--;
} else {
// 4-base
int p = 1 << (h - len);
mint irot = 1, iimag = iroot[2];
for (int s = 0; s < (1 << (len - 2)); s++) {
mint irot2 = irot * irot;
mint irot3 = irot2 * irot;
int offset = s << (h - len + 2);
for (int i = 0; i < p; i++) {
auto a0 = 1ULL * a[i + offset + 0 * p].v;
auto a1 = 1ULL * a[i + offset + 1 * p].v;
auto a2 = 1ULL * a[i + offset + 2 * p].v;
auto a3 = 1ULL * a[i + offset + 3 * p].v;
auto a2na3iimag = 1ULL * mint((mint::mod() + a2 - a3) * iimag.v).v;
a[i + offset] = a0 + a1 + a2 + a3;
a[i + offset + 1 * p] = (a0 + (mint::mod() - a1) + a2na3iimag) * irot.v;
a[i + offset + 2 * p] = (a0 + a1 + (mint::mod() - a2) + (mint::mod() - a3)) * irot2.v;
a[i + offset + 3 * p] = (a0 + (mint::mod() - a1) + (mint::mod() - a2na3iimag)) * irot3.v;
}
if (s + 1 != (1 << (len - 2))) irot *= irate3[bsf(~(unsigned int)(s))];
}
len -= 2;
}
}
}
std::vector<mint> convolution_naive(const std::vector<mint>& a, const std::vector<mint>& b) {
int n = int(a.size()), m = int(b.size());
std::vector<mint> ans(n + m - 1);
if (n < m) {
for (int j = 0; j < m; j++) {
for (int i = 0; i < n; i++) {
ans[i + j] += a[i] * b[j];
}
}
} else {
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
ans[i + j] += a[i] * b[j];
}
}
}
return ans;
}
std::vector<mint> convolution_fft(std::vector<mint> a, std::vector<mint> b) {
int n = int(a.size()), m = int(b.size());
int z = 1 << ceil_pow2(n + m - 1);
a.resize(z), butterfly(a);
b.resize(z), butterfly(b);
for (int i = 0; i < z; i++) a[i] *= b[i];
butterfly_inv(a);
a.resize(n + m - 1);
mint iz = mint(z).inv();
for (int i = 0; i < n + m - 1; i++) a[i] *= iz;
return a;
}
};
template <class mint> std::vector<mint> convolution(std::vector<mint>&& a, std::vector<mint>&& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
static fft_info<mint> info;
if (std::min(n, m) <= 60) return info.convolution_naive(a, b);
return info.convolution_fft(a, b);
}
template <unsigned int mod = 998244353, class T>
std::vector<T> convolution(std::vector<T>& a, std::vector<T>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
using mint = prime_modint<mod>;
std::vector<mint> a2(n), b2(m), c2;
for (int i = 0; i < n; i++) a2[i] = mint(a[i]);
for (int i = 0; i < m; i++) b2[i] = mint(b[i]);
static fft_info<mint> info;
if (std::min(n, m) <= 60) c2 = info.convolution_naive(a2, b2);
else c2 = info.convolution_fft(a2, b2);
std::vector<T> c(n + m - 1);
for (int i = 0; i < n + m - 1; i++) c[i] = c2[i].v;
return c;
}
std::vector<long long> convolution_ll(std::vector<long long>& a, std::vector<long long>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
auto safe_mod = [&](long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
};
static constexpr unsigned long long MOD1 = 754974721; // 2^24
static constexpr unsigned long long MOD2 = 167772161; // 2^25
static constexpr unsigned long long MOD3 = 469762049; // 2^26
static constexpr unsigned long long M2M3 = MOD2 * MOD3;
static constexpr unsigned long long M1M3 = MOD1 * MOD3;
static constexpr unsigned long long M1M2 = MOD1 * MOD2;
static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;
static constexpr unsigned long long i1 = 190329765; //inv_gcd(MOD2 * MOD3, MOD1).second
static constexpr unsigned long long i2 = 58587104; //inv_gcd(MOD1 * MOD3, MOD2).second
static constexpr unsigned long long i3 = 187290749; //inv_gcd(MOD1 * MOD2, MOD3).second
auto c1 = convolution<MOD1>(a, b);
auto c2 = convolution<MOD2>(a, b);
auto c3 = convolution<MOD3>(a, b);
std::vector<long long> c(n + m - 1);
for (int i = 0; i < n + m - 1; i++) {
unsigned long long x = 0;
x += (c1[i] * i1) % MOD1 * M2M3;
x += (c2[i] * i2) % MOD2 * M1M3;
x += (c3[i] * i3) % MOD3 * M1M2;
long long diff = c1[i] - safe_mod((long long)(x), (long long)(MOD1));
if (diff < 0) diff += MOD1;
static constexpr unsigned long long offset[5] = {0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
x -= offset[diff % 5];
c[i] = x;
}
return c;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
ll n, m, x;
cin >> n >> m >> x;
vector<vector<mint>> a(5, vector<mint>(n)), b(5, vector<mint>(n)), c(5);
for(int i = 0; i < n; i++){
int v;
cin >> v;
v--;
a[v][n - 1 - i] = 1;
}
for(int i = 0; i < m; i++){
int x, y, z;
cin >> x >> y >> z;
x--, y--;
b[y][x] += z;
}
vector<ll> score(n + 1);
score[n] = n * x;
for(int i = 0; i < n; i++){
score[i] += i * x;
}
for(int i = 0; i < 5; i++){
c[i] = convolution(a[i], b[i]);
for(int j = n - 1; j >= 0; j--){
score[j] += c[i][(n - 1) - j].v;
}
}
cout << *max_element(score.begin(), score.end()) << '\n';
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0