結果

問題 No.2330 Eat Slime
ユーザー torisasami4torisasami4
提出日時 2023-05-28 15:35:11
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 433 ms / 4,000 ms
コード長 9,017 bytes
コンパイル時間 4,014 ms
コンパイル使用メモリ 242,668 KB
実行使用メモリ 42,168 KB
最終ジャッジ日時 2024-06-08 08:03:29
合計ジャッジ時間 13,962 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 3 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 422 ms
38,816 KB
testcase_08 AC 178 ms
20,592 KB
testcase_09 AC 368 ms
37,704 KB
testcase_10 AC 54 ms
8,896 KB
testcase_11 AC 44 ms
6,844 KB
testcase_12 AC 366 ms
38,320 KB
testcase_13 AC 354 ms
38,440 KB
testcase_14 AC 81 ms
10,052 KB
testcase_15 AC 211 ms
21,608 KB
testcase_16 AC 354 ms
37,288 KB
testcase_17 AC 421 ms
42,036 KB
testcase_18 AC 431 ms
42,036 KB
testcase_19 AC 423 ms
42,036 KB
testcase_20 AC 422 ms
42,036 KB
testcase_21 AC 430 ms
42,164 KB
testcase_22 AC 427 ms
42,160 KB
testcase_23 AC 425 ms
42,036 KB
testcase_24 AC 419 ms
42,040 KB
testcase_25 AC 420 ms
42,168 KB
testcase_26 AC 423 ms
42,036 KB
testcase_27 AC 433 ms
42,032 KB
testcase_28 AC 430 ms
42,164 KB
testcase_29 AC 429 ms
42,036 KB
testcase_30 AC 426 ms
42,036 KB
testcase_31 AC 421 ms
42,036 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// #define _GLIBCXX_DEBUG
#pragma GCC optimize("O2,no-stack-protector,unroll-loops,fast-math")
#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < int(n); i++)
#define per(i, n) for (int i = (n)-1; 0 <= i; i--)
#define rep2(i, l, r) for (int i = (l); i < int(r); i++)
#define per2(i, l, r) for (int i = (r)-1; int(l) <= i; i--)
#define each(e, v) for (auto& e : v)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
template <typename T> void print(const vector<T>& v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
    if (v.empty()) cout << '\n';
}
using ll = long long;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
template <typename T> bool chmax(T& x, const T& y) {
    return (x < y) ? (x = y, true) : false;
}
template <typename T> bool chmin(T& x, const T& y) {
    return (x > y) ? (x = y, true) : false;
}
template <class T>
using minheap = std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <class T> using maxheap = std::priority_queue<T>;
template <typename T> int lb(const vector<T>& v, T x) {
    return lower_bound(begin(v), end(v), x) - begin(v);
}
template <typename T> int ub(const vector<T>& v, T x) {
    return upper_bound(begin(v), end(v), x) - begin(v);
}
template <typename T> void rearrange(vector<T>& v) {
    sort(begin(v), end(v));
    v.erase(unique(begin(v), end(v)), end(v));
}

// __int128_t gcd(__int128_t a, __int128_t b) {
//     if (a == 0)
//         return b;
//     if (b == 0)
//         return a;
//     __int128_t cnt = a % b;
//     while (cnt != 0) {
//         a = b;
//         b = cnt;
//         cnt = a % b;
//     }
//     return b;
// }

long long extGCD(long long a, long long b, long long& x, long long& y) {
    if (b == 0) {
        x = 1;
        y = 0;
        return a;
    }
    long long d = extGCD(b, a % b, y, x);
    y -= a / b * x;
    return d;
}

struct UnionFind {
    vector<int> data;
    int num;

    UnionFind(int sz) {
        data.assign(sz, -1);
        num = sz;
    }

    bool unite(int x, int y) {
        x = find(x), y = find(y);
        if (x == y) return (false);
        if (data[x] > data[y]) swap(x, y);
        data[x] += data[y];
        data[y] = x;
        num--;
        return (true);
    }

    int find(int k) {
        if (data[k] < 0) return (k);
        return (data[k] = find(data[k]));
    }

    int size(int k) { return (-data[find(k)]); }

    bool same(int x, int y) { return find(x) == find(y); }

    int operator[](int k) { return find(k); }
};

template <int mod> struct Mod_Int {
    int x;

    Mod_Int() : x(0) {}

    Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

    static int get_mod() { return mod; }

    Mod_Int& operator+=(const Mod_Int& p) {
        if ((x += p.x) >= mod) x -= mod;
        return *this;
    }

    Mod_Int& operator-=(const Mod_Int& p) {
        if ((x += mod - p.x) >= mod) x -= mod;
        return *this;
    }

    Mod_Int& operator*=(const Mod_Int& p) {
        x = (int)(1LL * x * p.x % mod);
        return *this;
    }

    Mod_Int& operator/=(const Mod_Int& p) {
        *this *= p.inverse();
        return *this;
    }

    Mod_Int& operator++() { return *this += Mod_Int(1); }

    Mod_Int operator++(int) {
        Mod_Int tmp = *this;
        ++*this;
        return tmp;
    }

    Mod_Int& operator--() { return *this -= Mod_Int(1); }

    Mod_Int operator--(int) {
        Mod_Int tmp = *this;
        --*this;
        return tmp;
    }

    Mod_Int operator-() const { return Mod_Int(-x); }

    Mod_Int operator+(const Mod_Int& p) const { return Mod_Int(*this) += p; }

    Mod_Int operator-(const Mod_Int& p) const { return Mod_Int(*this) -= p; }

    Mod_Int operator*(const Mod_Int& p) const { return Mod_Int(*this) *= p; }

    Mod_Int operator/(const Mod_Int& p) const { return Mod_Int(*this) /= p; }

    bool operator==(const Mod_Int& p) const { return x == p.x; }

    bool operator!=(const Mod_Int& p) const { return x != p.x; }

    Mod_Int inverse() const {
        assert(*this != Mod_Int(0));
        return pow(mod - 2);
    }

    Mod_Int pow(long long k) const {
        Mod_Int now = *this, ret = 1;
        for (; k > 0; k >>= 1, now *= now) {
            if (k & 1) ret *= now;
        }
        return ret;
    }

    friend ostream& operator<<(ostream& os, const Mod_Int& p) {
        return os << p.x;
    }

    friend istream& operator>>(istream& is, Mod_Int& p) {
        long long a;
        is >> a;
        p = Mod_Int<mod>(a);
        return is;
    }
};

ll mpow2(ll x, ll n, ll mod) {
    ll ans = 1;
    x %= mod;
    while (n != 0) {
        if (n & 1) ans = ans * x % mod;
        x = x * x % mod;
        n = n >> 1;
    }
    ans %= mod;
    return ans;
}

template <typename T> T modinv(T a, const T& m) {
    T b = m, u = 1, v = 0;
    while (b > 0) {
        T t = a / b;
        swap(a -= t * b, b);
        swap(u -= t * v, v);
    }
    return u >= 0 ? u % m : (m - (-u) % m) % m;
}

ll divide_int(ll a, ll b) {
    if (b < 0) a = -a, b = -b;
    return (a >= 0 ? a / b : (a - b + 1) / b);
}

// const int MOD = 1000000007;
const int MOD = 998244353;
using mint = Mod_Int<MOD>;

mint mpow(mint x, ll n) {
    bool rev = n < 0;
    n = abs(n);
    mint ans = 1;
    while (n != 0) {
        if (n & 1) ans *= x;
        x *= x;
        n = n >> 1;
    }
    return (rev ? ans.inverse() : ans);
}

// ----- library -------
template <typename T>
struct Fast_Fourier_Transform {
    using comp = complex<double>;
    static double pi;
    static vector<comp> r, ir;

    Fast_Fourier_Transform() {}

    static void init() {
        if (!r.empty()) return;
        r.resize(30), ir.resize(30);
        for (int i = 0; i < 30; i++) {
            r[i] = -polar(1.0, pi / (1 << (i + 1)));   // r[i] := 1 の 2^(i+2) 乗根
            ir[i] = -polar(1.0, -pi / (1 << (i + 1))); // ir[i] := 1/r[i]
        }
    }

    static vector<comp> to_comp(vector<T> a) {
        vector<comp> ret(a.size());
        for (int i = 0; i < (int)a.size(); i++) ret[i] = comp(a[i], 0.0);
        return ret;
    }

    static vector<T> to_T(vector<comp> a) {
        vector<T> ret(a.size(), 0);
        for (int i = 0; i < (int)a.size(); i++) ret[i] = a[i].real() + 0.1; // 整数の場合、誤差をケア
        // for(int i = 0; i < (int)a.size(); i++) ret[i] = a[i].real(); // 小数の場合
        return ret;
    }

    static void fft(vector<comp> &a) {
        init();
        int n = a.size();
        assert((n & (n - 1)) == 0);
        for (int k = n; k >>= 1;) {
            comp w = 1;
            for (int s = 0, t = 0; s < n; s += 2 * k) {
                for (int i = s, j = s + k; i < s + k; i++, j++) {
                    comp x = a[i], y = w * a[j];
                    a[i] = x + y, a[j] = x - y;
                }
                w *= r[__builtin_ctz(++t)];
            }
        }
    }

    static void ifft(vector<comp> &a) {
        init();
        int n = a.size();
        assert((n & (n - 1)) == 0);
        a.resize(n);
        for (int k = 1; k < n; k <<= 1) {
            comp w = 1;
            for (int s = 0, t = 0; s < n; s += 2 * k) {
                for (int i = s, j = s + k; i < s + k; i++, j++) {
                    comp x = a[i], y = a[j];
                    a[i] = x + y, a[j] = w * (x - y);
                }
                w *= ir[__builtin_ctz(++t)];
            }
        }
        for (auto &e : a) e /= n;
    }

    static vector<T> convolve(vector<T> a, vector<T> b) {
        int k = (int)a.size() + (int)b.size() - 1, n = 1;
        while (n < k) n <<= 1;
        vector<comp> A = to_comp(a), B = to_comp(b);
        A.resize(n), B.resize(n);
        fft(A), fft(B);
        for (int i = 0; i < n; i++) A[i] *= B[i];
        ifft(A);
        vector<T> c = to_T(A);
        c.resize(k);
        return c;
    }
};

template <typename T>
double Fast_Fourier_Transform<T>::pi = acos(-1.0);

template <typename T>
vector<complex<double>> Fast_Fourier_Transform<T>::r = vector<complex<double>>();

template <typename T>
vector<complex<double>> Fast_Fourier_Transform<T>::ir = vector<complex<double>>();
// ----- library -------

int main() {
    ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    cout << fixed << setprecision(15);

    int n, m, x;
    cin >> n >> m >> x;
    vector<int> c(n);
    rep(i, n) cin >> c[i], c[i]--;
    vector<int> a(m), b(m), y(m);
    rep(i, m) cin >> a[i] >> b[i] >> y[i], a[i]--, b[i]--;
    Fast_Fourier_Transform<int> fft;
    vector<int> val(n + 1, 0);
    rep(t, 5) {
        vector<int> f(n, 0), g(n, 0);
        rep(i, n) if (c[i] == t) f[i] = 1;
        rep(i, m) if (b[i] == t) g[n - 1 - a[i]] += y[i];
        f = fft.convolve(f, g);
        rep(i, n + 1) val[i] += f[i + n - 1];
    }
    int ans = 0;
    rep(i, n + 1) chmax(ans, val[i] + x * i);
    cout << ans << endl;
}
0