結果
問題 | No.2340 Triple Tree Query (Easy) |
ユーザー | 👑 Nachia |
提出日時 | 2023-05-30 18:43:46 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 133 ms / 5,000 ms |
コード長 | 14,474 bytes |
コンパイル時間 | 1,444 ms |
コンパイル使用メモリ | 104,040 KB |
実行使用メモリ | 12,832 KB |
最終ジャッジ日時 | 2024-06-08 20:29:56 |
合計ジャッジ時間 | 8,121 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 5 ms
5,376 KB |
testcase_02 | AC | 5 ms
5,376 KB |
testcase_03 | AC | 4 ms
5,376 KB |
testcase_04 | AC | 4 ms
5,376 KB |
testcase_05 | AC | 4 ms
5,376 KB |
testcase_06 | AC | 114 ms
12,696 KB |
testcase_07 | AC | 115 ms
12,700 KB |
testcase_08 | AC | 117 ms
12,676 KB |
testcase_09 | AC | 122 ms
12,640 KB |
testcase_10 | AC | 114 ms
12,700 KB |
testcase_11 | AC | 113 ms
12,632 KB |
testcase_12 | AC | 117 ms
12,832 KB |
testcase_13 | AC | 116 ms
12,576 KB |
testcase_14 | AC | 116 ms
12,700 KB |
testcase_15 | AC | 113 ms
12,572 KB |
testcase_16 | AC | 133 ms
12,568 KB |
testcase_17 | AC | 125 ms
12,696 KB |
testcase_18 | AC | 126 ms
12,660 KB |
testcase_19 | AC | 129 ms
12,704 KB |
testcase_20 | AC | 128 ms
12,572 KB |
testcase_21 | AC | 102 ms
12,704 KB |
testcase_22 | AC | 98 ms
12,664 KB |
testcase_23 | AC | 104 ms
12,568 KB |
testcase_24 | AC | 124 ms
12,700 KB |
testcase_25 | AC | 121 ms
12,700 KB |
testcase_26 | AC | 120 ms
12,700 KB |
testcase_27 | AC | 122 ms
12,676 KB |
testcase_28 | AC | 125 ms
12,696 KB |
testcase_29 | AC | 100 ms
12,696 KB |
testcase_30 | AC | 99 ms
12,568 KB |
testcase_31 | AC | 95 ms
12,568 KB |
testcase_32 | AC | 114 ms
12,700 KB |
testcase_33 | AC | 113 ms
12,704 KB |
testcase_34 | AC | 114 ms
12,656 KB |
testcase_35 | AC | 116 ms
12,828 KB |
testcase_36 | AC | 113 ms
12,700 KB |
ソースコード
#line 1 "..\\Main.cpp" #include <iostream> #include <string> #include <vector> #include <algorithm> #include <atcoder/modint> #line 2 "D:\\Programming\\VSCode\\competitive-cpp\\nachia\\array\\csr-array.hpp" #include <utility> #line 5 "D:\\Programming\\VSCode\\competitive-cpp\\nachia\\array\\csr-array.hpp" namespace nachia{ template<class Elem> class CsrArray{ public: struct ListRange{ using iterator = typename std::vector<Elem>::iterator; iterator begi, endi; iterator begin() const { return begi; } iterator end() const { return endi; } int size() const { return (int)std::distance(begi, endi); } Elem& operator[](int i) const { return begi[i]; } }; struct ConstListRange{ using iterator = typename std::vector<Elem>::const_iterator; iterator begi, endi; iterator begin() const { return begi; } iterator end() const { return endi; } int size() const { return (int)std::distance(begi, endi); } const Elem& operator[](int i) const { return begi[i]; } }; private: int m_n; std::vector<Elem> m_list; std::vector<int> m_pos; public: CsrArray() : m_n(0), m_list(), m_pos() {} static CsrArray Construct(int n, std::vector<std::pair<int, Elem>> items){ CsrArray res; res.m_n = n; std::vector<int> buf(n+1, 0); for(auto& [u,v] : items){ ++buf[u]; } for(int i=1; i<=n; i++) buf[i] += buf[i-1]; res.m_list.resize(buf[n]); for(int i=(int)items.size()-1; i>=0; i--){ res.m_list[--buf[items[i].first]] = std::move(items[i].second); } res.m_pos = std::move(buf); return res; } static CsrArray FromRaw(std::vector<Elem> list, std::vector<int> pos){ CsrArray res; res.m_n = pos.size() - 1; res.m_list = std::move(list); res.m_pos = std::move(pos); return res; } ListRange operator[](int u) { return ListRange{ m_list.begin() + m_pos[u], m_list.begin() + m_pos[u+1] }; } ConstListRange operator[](int u) const { return ConstListRange{ m_list.begin() + m_pos[u], m_list.begin() + m_pos[u+1] }; } int size() const { return m_n; } int fullSize() const { return (int)m_list.size(); } }; } // namespace nachia #line 4 "D:\\Programming\\VSCode\\competitive-cpp\\nachia\\graph\\graph.hpp" #include <cassert> #line 6 "D:\\Programming\\VSCode\\competitive-cpp\\nachia\\graph\\graph.hpp" namespace nachia{ struct Graph { public: struct Edge{ int from, to; void reverse(){ std::swap(from, to); } }; using Base = std::vector<std::pair<int, int>>; Graph(int n = 0, bool undirected = false, int m = 0) : m_n(n), m_e(m), m_isUndir(undirected) {} Graph(int n, const std::vector<std::pair<int, int>>& edges, bool undirected = false) : m_n(n), m_isUndir(undirected){ m_e.resize(edges.size()); for(std::size_t i=0; i<edges.size(); i++) m_e[i] = { edges[i].first, edges[i].second }; } template<class Cin> static Graph Input(Cin& cin, int n, bool undirected, int m, bool offset = 0){ Graph res(n, undirected, m); for(int i=0; i<m; i++){ int u, v; cin >> u >> v; res[i].from = u - offset; res[i].to = v - offset; } return res; } int numVertices() const noexcept { return m_n; } int numEdges() const noexcept { return int(m_e.size()); } int addNode() noexcept { return m_n++; } int addEdge(int from, int to){ m_e.push_back({ from, to }); return numEdges() - 1; } Edge& operator[](int ei) noexcept { return m_e[ei]; } const Edge& operator[](int ei) const noexcept { return m_e[ei]; } Edge& at(int ei) { return m_e.at(ei); } const Edge& at(int ei) const { return m_e.at(ei); } auto begin(){ return m_e.begin(); } auto end(){ return m_e.end(); } auto begin() const { return m_e.begin(); } auto end() const { return m_e.end(); } bool isUndirected() const noexcept { return m_isUndir; } void reverseEdges() noexcept { for(auto& e : m_e) e.reverse(); } void contract(int newV, const std::vector<int>& mapping){ assert(numVertices() == int(mapping.size())); for(int i=0; i<numVertices(); i++) assert(0 <= mapping[i] && mapping[i] < newV); for(auto& e : m_e){ e.from = mapping[e.from]; e.to = mapping[e.to]; } m_n = newV; } std::vector<Graph> induce(int num, const std::vector<int>& mapping) const { int n = numVertices(); assert(n == int(mapping.size())); for(int i=0; i<n; i++) assert(-1 <= mapping[i] && mapping[i] < num); std::vector<int> indexV(n), newV(num); for(int i=0; i<n; i++) if(mapping[i] >= 0) indexV[i] = newV[mapping[i]]++; std::vector<Graph> res; res.reserve(num); for(int i=0; i<num; i++) res.emplace_back(newV[i], isUndirected()); for(auto e : m_e) if(mapping[e.from] == mapping[e.to] && mapping[e.to] >= 0) res[mapping[e.to]].addEdge(indexV[e.from], indexV[e.to]); return res; } CsrArray<int> getEdgeIndexArray(bool undirected) const { std::vector<std::pair<int, int>> src; src.reserve(numEdges() * (undirected ? 2 : 1)); for(int i=0; i<numEdges(); i++){ auto e = operator[](i); src.emplace_back(e.from, i); if(undirected) src.emplace_back(e.to, i); } return CsrArray<int>::Construct(numVertices(), src); } CsrArray<int> getEdgeIndexArray() const { return getEdgeIndexArray(isUndirected()); } CsrArray<int> getAdjacencyArray(bool undirected) const { std::vector<std::pair<int, int>> src; src.reserve(numEdges() * (undirected ? 2 : 1)); for(auto e : m_e){ src.emplace_back(e.from, e.to); if(undirected) src.emplace_back(e.to, e.from); } return CsrArray<int>::Construct(numVertices(), src); } CsrArray<int> getAdjacencyArray() const { return getAdjacencyArray(isUndirected()); } private: int m_n; std::vector<Edge> m_e; bool m_isUndir; }; } // namespace nachia #line 6 "D:\\Programming\\VSCode\\competitive-cpp\\nachia\\tree\\heavy-light-decomposition.hpp" namespace nachia{ struct HeavyLightDecomposition{ private: int N; std::vector<int> P; std::vector<int> PP; std::vector<int> PD; std::vector<int> D; std::vector<int> I; std::vector<int> rangeL; std::vector<int> rangeR; public: HeavyLightDecomposition(const CsrArray<int>& E = CsrArray<int>::Construct(1, {}), int root = 0){ N = E.size(); P.assign(N, -1); I = {root}; I.reserve(N); for(int i=0; i<(int)I.size(); i++){ int p = I[i]; for(int e : E[p]) if(P[p] != e){ I.push_back(e); P[e] = p; } } std::vector<int> Z(N, 1); std::vector<int> nx(N, -1); PP.resize(N); for(int i=0; i<N; i++) PP[i] = i; for(int i=N-1; i>=1; i--){ int p = I[i]; Z[P[p]] += Z[p]; if(nx[P[p]] == -1) nx[P[p]] = p; if(Z[nx[P[p]]] < Z[p]) nx[P[p]] = p; } for(int p : I) if(nx[p] != -1) PP[nx[p]] = p; PD.assign(N,N); PD[root] = 0; D.assign(N,0); for(int p : I) if(p != root){ PP[p] = PP[PP[p]]; PD[p] = std::min(PD[PP[p]], PD[P[p]]+1); D[p] = D[P[p]]+1; } rangeL.assign(N,0); rangeR.assign(N,0); for(int p : I){ rangeR[p] = rangeL[p] + Z[p]; int ir = rangeR[p]; for(int e : E[p]) if(P[p] != e) if(e != nx[p]){ rangeL[e] = (ir -= Z[e]); } if(nx[p] != -1){ rangeL[nx[p]] = rangeL[p] + 1; } } I.resize(N); for(int i=0; i<N; i++) I[rangeL[i]] = i; } HeavyLightDecomposition(const Graph& tree, int root = 0) : HeavyLightDecomposition(tree.getAdjacencyArray(true), root) {} int numVertices() const { return N; } int depth(int p) const { return D[p]; } int toSeq(int vertex) const { return rangeL[vertex]; } int toVtx(int seqidx) const { return I[seqidx]; } int toSeq2In(int vertex) const { return rangeL[vertex] * 2 - D[vertex]; } int toSeq2Out(int vertex) const { return rangeR[vertex] * 2 - D[vertex] - 1; } int parentOf(int v) const { return P[v]; } int heavyRootOf(int v) const { return PP[v]; } int heavyChildOf(int v) const { if(toSeq(v) == N-1) return -1; int cand = toVtx(toSeq(v) + 1); if(PP[v] == PP[cand]) return cand; return -1; } int lca(int u, int v) const { if(PD[u] < PD[v]) std::swap(u, v); while(PD[u] > PD[v]) u = P[PP[u]]; while(PP[u] != PP[v]){ u = P[PP[u]]; v = P[PP[v]]; } return (D[u] > D[v]) ? v : u; } int dist(int u, int v) const { return depth(u) + depth(v) - depth(lca(u,v)) * 2; } std::vector<std::pair<int,int>> path(int r, int c, bool include_root = true, bool reverse_path = false) const { if(PD[c] < PD[r]) return {}; std::vector<std::pair<int,int>> res(PD[c]-PD[r]+1); for(int i=0; i<(int)res.size()-1; i++){ res[i] = std::make_pair(rangeL[PP[c]], rangeL[c]+1); c = P[PP[c]]; } if(PP[r] != PP[c] || D[r] > D[c]) return {}; res.back() = std::make_pair(rangeL[r]+(include_root?0:1), rangeL[c]+1); if(res.back().first == res.back().second) res.pop_back(); if(!reverse_path) std::reverse(res.begin(),res.end()); else for(auto& a : res) a = std::make_pair(N - a.second, N - a.first); return res; } std::pair<int,int> subtree(int p){ return std::make_pair(rangeL[p], rangeR[p]); } int median(int x, int y, int z) const { return lca(x,y) ^ lca(y,z) ^ lca(x,z); } int la(int from, int to, int d) const { if(d < 0) return -1; int g = lca(from,to); int dist0 = D[from] - D[g] * 2 + D[to]; if(dist0 < d) return -1; int p = from; if(D[from] - D[g] < d){ p = to; d = dist0 - d; } while(D[p] - D[PP[p]] < d){ d -= D[p] - D[PP[p]] + 1; p = P[PP[p]]; } return I[rangeL[p] - d]; } }; } // namespace nachia #line 1 "D:\\Programming\\VSCode\\competitive-cpp\\nachia\\array\\dual-segment-tree.hpp" #line 3 "D:\\Programming\\VSCode\\competitive-cpp\\nachia\\array\\dual-segment-tree.hpp" namespace nachia{ template< class F, F composition(F f, F x), F id() > struct DualSegtree { struct Node { F f; bool propagated; }; int N; int logN; std::vector<Node> A; void mapf(Node& a, F f) { a.propagated = false; a.f = composition(f, a.f); } void spread(int i) { if(A[i].propagated || !(i < N)) return; mapf(A[i*2], A[i].f); mapf(A[i*2+1], A[i].f); A[i].f = id(); A[i].propagated = true; } DualSegtree(int n) { N=1; logN=0; while(N<n){ N *= 2; logN++; } A.assign(N * 2, { id(), true }); } DualSegtree(const std::vector<F>& a) : DualSegtree(a.size()) { for(int i=0; i<a.size(); i++){ A[i+N].f = a[i]; A[i+N].propagated = false; } } void clear(int p) { p += N; for(int d=logN; d; d--) spread(p >> d); A[p].f = id(); A[p].propagated = true; } F get(int p){ p += N; for(int d=logN; d; d--) spread(p >> d); return A[p].f; } void apply(int l, int r, F f) { if(!(l < r)) return; if(l == 0 && r == N){ mapf(A[1], f); return; } l += N; r += N; for(int d=logN; d; d--){ if((l >> d) << d != l) spread(l >> d); if((r >> d) << d != r) spread(r >> d); } while(l < r){ if(l&1){ mapf(A[l++], f); } l /= 2; if(r&1){ mapf(A[--r], f); } r /= 2; } } }; } // namespace nachia; #line 9 "..\\Main.cpp" using namespace std; using i32 = int; using u32 = unsigned int; using i64 = long long; using u64 = unsigned long long; #define rep(i,n) for(int i=0; i<(int)(n); i++) const i64 INF = 1001001001001001001; using Modint = atcoder::static_modint<998244353>; struct Affine { Modint c, d; static Affine Construct(int c, int d){ return Affine{ Modint::raw(c), Modint::raw(d) }; } Modint eval(Modint x) const { return c*x+d; } }; Affine f1(Affine a, Affine b){ Affine res; res.c = a.c * b.c; res.d = a.c * b.d + a.d; return res; } Affine f2(){ return Affine { Modint::raw(1), Modint::raw(0) }; } int main(){ int N, Q; cin >> N >> Q; auto tree = nachia::Graph::Input(cin, N, true, N-1, 1); auto hld = nachia::HeavyLightDecomposition(tree); tree = nachia::Graph(N, false); rep(i,N) if(hld.parentOf(i) >= 0) tree.addEdge(hld.parentOf(i), i); auto adj = tree.getAdjacencyArray(); vector<int> seqL(N), seqR(N), pos(N); seqL[0] = 1; seqR[0] = N; rep(i,N-1){ int pre = hld.toVtx(i); int v = hld.toVtx(i+1); seqL[v] = seqL[pre] + adj[pre].size(); seqR[v] = seqL[v] + hld.subtree(v).second - hld.subtree(v).first - 1; } rep(v,N) rep(e,adj[v].size()) pos[adj[v][e]] = seqL[v] + e; vector<Modint> X(N); rep(i,N){ int x; cin >> x; X[i] = Modint::raw(x); } nachia::DualSegtree<Affine, f1, f2> rq(N); rep(i,Q){ int t; cin >> t; if(t == 1){ int v; cin >> v; v--; auto f = rq.get(pos[v]).eval(X[v]); cout << f.val() << '\n'; } if(t == 2){ int v, k, c, d; cin >> v >> k >> c >> d; v--; Affine af = Affine::Construct(c, d); rq.apply(seqL[v], seqL[v] + adj[v].size(), af); rq.apply(pos[v], pos[v] + 1, af); if(v != 0){ int p = hld.parentOf(v); rq.apply(pos[p], pos[p] + 1, af); } } if(t == 3){ int v, c, d; cin >> v >> c >> d; v--; Affine af = Affine::Construct(c, d); rq.apply(pos[v], pos[v] + 1, af); rq.apply(seqL[v], seqR[v], af); } } return 0; } struct ios_do_not_sync{ ios_do_not_sync(){ ios::sync_with_stdio(false); cin.tie(nullptr); } } ios_do_not_sync_instance;