結果

問題 No.2342 Triple Tree Query (Hard)
ユーザー 👑 Nachia
提出日時 2023-05-30 21:07:25
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 402 ms / 10,000 ms
コード長 18,906 bytes
コンパイル時間 1,995 ms
コンパイル使用メモリ 117,268 KB
最終ジャッジ日時 2025-02-13 16:52:52
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 36
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#line 1 "..\\Main.cpp"
#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <tuple>
#include <atcoder/modint>
#line 2 "D:\\Programming\\VSCode\\competitive-cpp\\nachia\\array\\csr-array.hpp"
#include <utility>
#line 5 "D:\\Programming\\VSCode\\competitive-cpp\\nachia\\array\\csr-array.hpp"
namespace nachia{
template<class Elem>
class CsrArray{
public:
struct ListRange{
using iterator = typename std::vector<Elem>::iterator;
iterator begi, endi;
iterator begin() const { return begi; }
iterator end() const { return endi; }
int size() const { return (int)std::distance(begi, endi); }
Elem& operator[](int i) const { return begi[i]; }
};
struct ConstListRange{
using iterator = typename std::vector<Elem>::const_iterator;
iterator begi, endi;
iterator begin() const { return begi; }
iterator end() const { return endi; }
int size() const { return (int)std::distance(begi, endi); }
const Elem& operator[](int i) const { return begi[i]; }
};
private:
int m_n;
std::vector<Elem> m_list;
std::vector<int> m_pos;
public:
CsrArray() : m_n(0), m_list(), m_pos() {}
static CsrArray Construct(int n, std::vector<std::pair<int, Elem>> items){
CsrArray res;
res.m_n = n;
std::vector<int> buf(n+1, 0);
for(auto& [u,v] : items){ ++buf[u]; }
for(int i=1; i<=n; i++) buf[i] += buf[i-1];
res.m_list.resize(buf[n]);
for(int i=(int)items.size()-1; i>=0; i--){
res.m_list[--buf[items[i].first]] = std::move(items[i].second);
}
res.m_pos = std::move(buf);
return res;
}
static CsrArray FromRaw(std::vector<Elem> list, std::vector<int> pos){
CsrArray res;
res.m_n = pos.size() - 1;
res.m_list = std::move(list);
res.m_pos = std::move(pos);
return res;
}
ListRange operator[](int u) { return ListRange{ m_list.begin() + m_pos[u], m_list.begin() + m_pos[u+1] }; }
ConstListRange operator[](int u) const { return ConstListRange{ m_list.begin() + m_pos[u], m_list.begin() + m_pos[u+1] }; }
int size() const { return m_n; }
int fullSize() const { return (int)m_list.size(); }
};
} // namespace nachia
#line 4 "D:\\Programming\\VSCode\\competitive-cpp\\nachia\\graph\\graph.hpp"
#include <cassert>
#line 6 "D:\\Programming\\VSCode\\competitive-cpp\\nachia\\graph\\graph.hpp"
namespace nachia{
struct Graph {
public:
struct Edge{
int from, to;
void reverse(){ std::swap(from, to); }
};
using Base = std::vector<std::pair<int, int>>;
Graph(int n = 0, bool undirected = false, int m = 0) : m_n(n), m_e(m), m_isUndir(undirected) {}
Graph(int n, const std::vector<std::pair<int, int>>& edges, bool undirected = false) : m_n(n), m_isUndir(undirected){
m_e.resize(edges.size());
for(std::size_t i=0; i<edges.size(); i++) m_e[i] = { edges[i].first, edges[i].second };
}
template<class Cin>
static Graph Input(Cin& cin, int n, bool undirected, int m, bool offset = 0){
Graph res(n, undirected, m);
for(int i=0; i<m; i++){
int u, v; cin >> u >> v;
res[i].from = u - offset;
res[i].to = v - offset;
}
return res;
}
int numVertices() const noexcept { return m_n; }
int numEdges() const noexcept { return int(m_e.size()); }
int addNode() noexcept { return m_n++; }
int addEdge(int from, int to){ m_e.push_back({ from, to }); return numEdges() - 1; }
Edge& operator[](int ei) noexcept { return m_e[ei]; }
const Edge& operator[](int ei) const noexcept { return m_e[ei]; }
Edge& at(int ei) { return m_e.at(ei); }
const Edge& at(int ei) const { return m_e.at(ei); }
auto begin(){ return m_e.begin(); }
auto end(){ return m_e.end(); }
auto begin() const { return m_e.begin(); }
auto end() const { return m_e.end(); }
bool isUndirected() const noexcept { return m_isUndir; }
void reverseEdges() noexcept { for(auto& e : m_e) e.reverse(); }
void contract(int newV, const std::vector<int>& mapping){
assert(numVertices() == int(mapping.size()));
for(int i=0; i<numVertices(); i++) assert(0 <= mapping[i] && mapping[i] < newV);
for(auto& e : m_e){ e.from = mapping[e.from]; e.to = mapping[e.to]; }
m_n = newV;
}
std::vector<Graph> induce(int num, const std::vector<int>& mapping) const {
int n = numVertices();
assert(n == int(mapping.size()));
for(int i=0; i<n; i++) assert(-1 <= mapping[i] && mapping[i] < num);
std::vector<int> indexV(n), newV(num);
for(int i=0; i<n; i++) if(mapping[i] >= 0) indexV[i] = newV[mapping[i]]++;
std::vector<Graph> res; res.reserve(num);
for(int i=0; i<num; i++) res.emplace_back(newV[i], isUndirected());
for(auto e : m_e) if(mapping[e.from] == mapping[e.to] && mapping[e.to] >= 0) res[mapping[e.to]].addEdge(indexV[e.from], indexV[e.to]);
return res;
}
CsrArray<int> getEdgeIndexArray(bool undirected) const {
std::vector<std::pair<int, int>> src;
src.reserve(numEdges() * (undirected ? 2 : 1));
for(int i=0; i<numEdges(); i++){
auto e = operator[](i);
src.emplace_back(e.from, i);
if(undirected) src.emplace_back(e.to, i);
}
return CsrArray<int>::Construct(numVertices(), src);
}
CsrArray<int> getEdgeIndexArray() const { return getEdgeIndexArray(isUndirected()); }
CsrArray<int> getAdjacencyArray(bool undirected) const {
std::vector<std::pair<int, int>> src;
src.reserve(numEdges() * (undirected ? 2 : 1));
for(auto e : m_e){
src.emplace_back(e.from, e.to);
if(undirected) src.emplace_back(e.to, e.from);
}
return CsrArray<int>::Construct(numVertices(), src);
}
CsrArray<int> getAdjacencyArray() const { return getAdjacencyArray(isUndirected()); }
private:
int m_n;
std::vector<Edge> m_e;
bool m_isUndir;
};
} // namespace nachia
#line 6 "D:\\Programming\\VSCode\\competitive-cpp\\nachia\\tree\\heavy-light-decomposition.hpp"
namespace nachia{
struct HeavyLightDecomposition{
private:
int N;
std::vector<int> P;
std::vector<int> PP;
std::vector<int> PD;
std::vector<int> D;
std::vector<int> I;
std::vector<int> rangeL;
std::vector<int> rangeR;
public:
HeavyLightDecomposition(const CsrArray<int>& E = CsrArray<int>::Construct(1, {}), int root = 0){
N = E.size();
P.assign(N, -1);
I = {root};
I.reserve(N);
for(int i=0; i<(int)I.size(); i++){
int p = I[i];
for(int e : E[p]) if(P[p] != e){
I.push_back(e);
P[e] = p;
}
}
std::vector<int> Z(N, 1);
std::vector<int> nx(N, -1);
PP.resize(N);
for(int i=0; i<N; i++) PP[i] = i;
for(int i=N-1; i>=1; i--){
int p = I[i];
Z[P[p]] += Z[p];
if(nx[P[p]] == -1) nx[P[p]] = p;
if(Z[nx[P[p]]] < Z[p]) nx[P[p]] = p;
}
for(int p : I) if(nx[p] != -1) PP[nx[p]] = p;
PD.assign(N,N);
PD[root] = 0;
D.assign(N,0);
for(int p : I) if(p != root){
PP[p] = PP[PP[p]];
PD[p] = std::min(PD[PP[p]], PD[P[p]]+1);
D[p] = D[P[p]]+1;
}
rangeL.assign(N,0);
rangeR.assign(N,0);
for(int p : I){
rangeR[p] = rangeL[p] + Z[p];
int ir = rangeR[p];
for(int e : E[p]) if(P[p] != e) if(e != nx[p]){
rangeL[e] = (ir -= Z[e]);
}
if(nx[p] != -1){
rangeL[nx[p]] = rangeL[p] + 1;
}
}
I.resize(N);
for(int i=0; i<N; i++) I[rangeL[i]] = i;
}
HeavyLightDecomposition(const Graph& tree, int root = 0)
: HeavyLightDecomposition(tree.getAdjacencyArray(true), root) {}
int numVertices() const { return N; }
int depth(int p) const { return D[p]; }
int toSeq(int vertex) const { return rangeL[vertex]; }
int toVtx(int seqidx) const { return I[seqidx]; }
int toSeq2In(int vertex) const { return rangeL[vertex] * 2 - D[vertex]; }
int toSeq2Out(int vertex) const { return rangeR[vertex] * 2 - D[vertex] - 1; }
int parentOf(int v) const { return P[v]; }
int heavyRootOf(int v) const { return PP[v]; }
int heavyChildOf(int v) const {
if(toSeq(v) == N-1) return -1;
int cand = toVtx(toSeq(v) + 1);
if(PP[v] == PP[cand]) return cand;
return -1;
}
int lca(int u, int v) const {
if(PD[u] < PD[v]) std::swap(u, v);
while(PD[u] > PD[v]) u = P[PP[u]];
while(PP[u] != PP[v]){ u = P[PP[u]]; v = P[PP[v]]; }
return (D[u] > D[v]) ? v : u;
}
int dist(int u, int v) const {
return depth(u) + depth(v) - depth(lca(u,v)) * 2;
}
std::vector<std::pair<int,int>> path(int r, int c, bool include_root = true, bool reverse_path = false) const {
if(PD[c] < PD[r]) return {};
std::vector<std::pair<int,int>> res(PD[c]-PD[r]+1);
for(int i=0; i<(int)res.size()-1; i++){
res[i] = std::make_pair(rangeL[PP[c]], rangeL[c]+1);
c = P[PP[c]];
}
if(PP[r] != PP[c] || D[r] > D[c]) return {};
res.back() = std::make_pair(rangeL[r]+(include_root?0:1), rangeL[c]+1);
if(res.back().first == res.back().second) res.pop_back();
if(!reverse_path) std::reverse(res.begin(),res.end());
else for(auto& a : res) a = std::make_pair(N - a.second, N - a.first);
return res;
}
std::pair<int,int> subtree(int p){
return std::make_pair(rangeL[p], rangeR[p]);
}
int median(int x, int y, int z) const {
return lca(x,y) ^ lca(y,z) ^ lca(x,z);
}
int la(int from, int to, int d) const {
if(d < 0) return -1;
int g = lca(from,to);
int dist0 = D[from] - D[g] * 2 + D[to];
if(dist0 < d) return -1;
int p = from;
if(D[from] - D[g] < d){ p = to; d = dist0 - d; }
while(D[p] - D[PP[p]] < d){
d -= D[p] - D[PP[p]] + 1;
p = P[PP[p]];
}
return I[rangeL[p] - d];
}
};
} // namespace nachia
#line 1 "D:\\Programming\\VSCode\\competitive-cpp\\nachia\\array\\dual-segment-tree.hpp"
#line 3 "D:\\Programming\\VSCode\\competitive-cpp\\nachia\\array\\dual-segment-tree.hpp"
namespace nachia{
template<
class F,
F composition(F f, F x)
>
struct DualSegtree {
struct Node { F f; bool propagated; };
int N;
int logN;
std::vector<Node> A;
void mapf(Node& a, F f) {
a.propagated = false;
a.f = composition(f, a.f);
}
void spread(int i) {
if(A[i].propagated || !(i < N)) return;
mapf(A[i*2], A[i].f);
mapf(A[i*2+1], A[i].f);
A[i] = A[0];
}
DualSegtree(int n, F id) {
N=1; logN=0;
while(N<n){ N *= 2; logN++; }
A.assign(N*2, { id, true });
}
DualSegtree(const std::vector<F>& a) : DualSegtree(a.size()) {
for(int i=0; i<a.size(); i++){ A[i+N].f = a[i]; A[i+N].propagated = false; }
}
void clear(int p) {
p += N;
for(int d=logN; d; d--) spread(p >> d);
A[p] = A[0];
}
F get(int p){
p += N;
for(int d=logN; d; d--) spread(p >> d);
return A[p].f;
}
void apply(int l, int r, F f){
if(!(l < r)) return;
if(l == 0 && r == N){ mapf(A[1], f); return; }
l += N; r += N;
for(int d=logN; d; d--){
if((l >> d) << d != l) spread(l >> d);
if((r >> d) << d != r) spread(r >> d);
}
while(l < r){
if(l&1){ mapf(A[l++], f); } l /= 2;
if(r&1){ mapf(A[--r], f); } r /= 2;
}
}
void apply(int p, F f){
p += N;
for(int d=logN; d; d--) spread(p >> d);
mapf(A[p], f);
}
};
} // namespace nachia;
#line 10 "..\\Main.cpp"
using namespace std;
using i32 = int;
using u32 = unsigned int;
using i64 = long long;
using u64 = unsigned long long;
#define rep(i,n) for(int i=0; i<(int)(n); i++)
const i64 INF = 1001001001001001001;
using Modint = atcoder::static_modint<998244353>;
struct Affine {
Modint c, d;
static Affine Construct(int c, int d){ return Affine{ Modint::raw(c), Modint::raw(d) }; }
Modint eval(Modint x) const { return c*x+d; }
};
Affine f1(Affine a, Affine b){
Affine res;
res.c = a.c * b.c;
res.d = a.c * b.d + a.d;
return res;
}
int naive(){
int N, Q; cin >> N >> Q;
auto tree = nachia::Graph::Input(cin, N, true, N-1, 1);
auto hld = nachia::HeavyLightDecomposition(tree);
vector<Modint> X(N); rep(i,N){ int x; cin >> x; X[i] = x; }
rep(i,Q){
int t; cin >> t;
if(t == 1){
int v; cin >> v; v--;
cout << X[v].val() << endl;
}
if(t == 2){
int v,k,c,d; cin >> v >> k >> c >> d; v--;
auto f = Affine::Construct(c,d);
rep(j,N) if(hld.dist(v,j) <= k) X[j] = f.eval(X[j]);
}
if(t == 3){
int v,c,d; cin >> v >> c >> d; v--;
auto f = Affine::Construct(c,d);
auto [l,r] = hld.subtree(v);
for(int j=l; j<r; j++){
int w = hld.toVtx(j);
X[w] = f.eval(X[w]);
}
}
if(t == 4){
int v,w,c,d; cin >> v >> w >> c >> d; v--; w--;
auto f = Affine::Construct(c,d);
int di = hld.dist(v, w);
rep(x,N) if(hld.dist(v,x) + hld.dist(w,x) == di) X[x] = f.eval(X[x]);
}
}
return 0;
}
int main(){
//return naive();
int maxK = 10;
int N, Q; cin >> N >> Q;
auto tree = nachia::Graph::Input(cin, N, true, N-1, 1);
auto hld = nachia::HeavyLightDecomposition(tree);
tree = nachia::Graph(N, false);
rep(i,N) if(hld.parentOf(i) >= 0) tree.addEdge(hld.parentOf(i), i);
auto adj = tree.getAdjacencyArray();
vector<int> h11(N); rep(i,N) h11[i] = (hld.depth(i) <= maxK) ? -1 : hld.toSeq(hld.la(i, 0, maxK+1));
vector<int> ord(N); rep(i,N) ord[i] = i;
sort(ord.begin(), ord.end(), [&](int a, int b){
return make_tuple(h11[a], hld.depth(a), hld.toSeq(a)) < make_tuple(h11[b], hld.depth(b), hld.toSeq(b));
});
vector<int> pos(N); rep(i,N) pos[ord[i]] = i;
vector<int> hdepth(N);
rep(i,N) hdepth[i] = hld.depth(i) - hld.depth(hld.heavyRootOf(i));
auto isOnHeavy = [&](int v){ return hdepth[v] > maxK; };
/*
cout << "##" << endl;
rep(i,N) cout << isOnHeavy(i);
cout << endl;
*/
vector<vector<pair<int, int>>> seq(N, vector<pair<int,int>>(maxK+1, {N,0}));
rep(v,N){
int w = v;
int p = pos[v];
for(int k=0; k<=maxK; k++){
seq[w][k].first = min(seq[w][k].first, p);
seq[w][k].second = max(seq[w][k].second, p+1);
w = hld.parentOf(w);
if(w < 0) break;
}
}
rep(i,N) for(auto& a : seq[i]) if(a.first >= a.second) a = {0,0};
/*
cout << "###" << endl;
cout << "h10 = ";
rep(i,N) cout << h10[i] << " ";
cout << endl;
cout << "seq : " << endl;
rep(k,maxK+1){
cout << " k = " << (k/10) << (k%10) << " : ";
rep(i,N) cout << seq[i][k].first << "-" << seq[i][k].second << " ";
cout << endl;
} cout << endl;
*/
vector<int> h11pos(N+1, 0);
rep(i,N) h11pos[h11[ord[i]]+1] = i+1;
rep(i,N) h11pos[i+1] = max(h11pos[i+1], h11pos[i]);
vector<pair<int, int>> subtree(N, {0,0});
rep(i,N) subtree[i] = { h11pos[hld.subtree(i).first], h11pos[hld.subtree(i).second] };
vector<Modint> X(N);
rep(i,N){ int x; cin >> x; X[i] = Modint::raw(x); }
nachia::DualSegtree<Affine, f1> rq(N, Affine::Construct(1,0));
nachia::DualSegtree<Affine, f1> rqh(N, Affine::Construct(1,0));
auto applyVtx = [&](int v, Affine f){
if(isOnHeavy(v)){
rqh.apply(hld.toSeq(v), f);
}
else{
rq.apply(pos[v], f);
}
};
auto heavyDec = [&](int v, int k) -> int {
int s = hld.toSeq(v);
s += k;
if(s >= N) return -1;
int w = hld.toVtx(s);
//if(hld.heavyRootOf(w) != hld.heavyRootOf(v) || !isOnHeavy(w)) return -1;
if(!isOnHeavy(w)) return -1;
return w;
};
auto applyDec = [&](int v, int k, Affine f, bool doHeavy = true){
if(k == 0){
if(isOnHeavy(v)){
if(doHeavy) rqh.apply(hld.toSeq(v), f);
}
else{
rq.apply(pos[v], f);
}
return;
}
if(doHeavy){
int hd = heavyDec(v, k);
if(hd >= 0) applyVtx(hd, f);
}
auto [l,r] = seq[v][k];
if(l <= r) rq.apply(l, r, f);
};
auto applyPath = [&](int r, int c, Affine f){
for(auto [a, b] : hld.path(r, c)){
while(a < b && !isOnHeavy(hld.toVtx(a))){
int av = hld.toVtx(a);
applyVtx(av, f);
a++;
}
rqh.apply(a, b, f);
}
};
rep(i,Q){
int t; cin >> t;
if(t == 1){
int v; cin >> v; v--;
Affine f = (isOnHeavy(v) ? rqh.get(hld.toSeq(v)) : rq.get(pos[v]));
cout << f.eval(X[v]).val() << '\n';
}
if(t == 2){
int v, k, c, d; cin >> v >> k >> c >> d; v--;
Affine af = Affine::Construct(c, d);
while(k >= 0){
applyDec(v, k, af);
k--; if(k < 0) break;
applyDec(v, k, af);
if(hld.parentOf(v) < 0){
while(k > 0){
k--;
applyDec(v, k, af);
}
break;
}
v = hld.parentOf(v);
}
}
if(t == 3){
int v, c, d; cin >> v >> c >> d; v--;
Affine af = Affine::Construct(c, d);
auto st = hld.subtree(v);
rqh.apply(st.first, st.second, af);
for(int k=0; k<=maxK; k++) applyDec(v, k, af, false);
rq.apply(subtree[v].first, subtree[v].second, af);
}
if(t == 4){
int u, v, c, d; cin >> u >> v >> c >> d; u--; v--;
Affine af = Affine::Construct(c, d);
int h = hld.lca(u, v);
applyPath(h, u, af);
if(h != v) applyPath(hld.la(h, v, 1), v, af);
}
}
return 0;
}
struct ios_do_not_sync{
ios_do_not_sync(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
}
} ios_do_not_sync_instance;
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0