結果

問題 No.807 umg tours
ユーザー ningenMeningenMe
提出日時 2023-05-31 02:58:21
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 344 ms / 4,000 ms
コード長 4,089 bytes
コンパイル時間 1,030 ms
コンパイル使用メモリ 88,312 KB
実行使用メモリ 45,608 KB
最終ジャッジ日時 2024-06-08 20:56:06
合計ジャッジ時間 7,122 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 1 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 AC 169 ms
32,732 KB
testcase_12 AC 186 ms
26,324 KB
testcase_13 AC 255 ms
36,480 KB
testcase_14 AC 108 ms
17,588 KB
testcase_15 AC 87 ms
14,504 KB
testcase_16 AC 262 ms
36,848 KB
testcase_17 AC 342 ms
45,004 KB
testcase_18 AC 344 ms
45,608 KB
testcase_19 AC 336 ms
43,168 KB
testcase_20 AC 206 ms
23,996 KB
testcase_21 AC 217 ms
24,824 KB
testcase_22 AC 88 ms
12,672 KB
testcase_23 AC 66 ms
10,624 KB
testcase_24 AC 196 ms
34,144 KB
testcase_25 AC 334 ms
44,028 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <vector>
#include <iostream>
#include <algorithm>
#include <array>
using namespace std;

/*
 * @title RadixHeap - 非負整数heap
 * @docs md/heap/RadixHeap.md
 */
template<class T, class Key = unsigned long long> class RadixHeap{
    using TypeNode = pair<Key, T>;
    template<class InnerKey, class ZZ=InnerKey> class Inner{};
    template<class InnerKey> class Inner<InnerKey, unsigned long long>{
        array<vector<TypeNode>,65> vq;
        unsigned long long size_num;
        TypeNode last;
        inline int bit(unsigned long long a) { return a ? 64 - __builtin_clzll(a) : 0;}
    public:
        Inner(T mini) : size_num(0), last(make_pair(0, mini)) {}
        inline bool empty() { return size_num == 0; }
        inline size_t size(){ return size_num; }
        inline void push(TypeNode x){ ++size_num; vq[bit(x.first^last.first)].push_back(x);}
        inline void emplace(unsigned long long key,T val){ ++size_num; vq[bit(key^last.first)].emplace_back(key,val);}
        inline TypeNode pop() {
            if(vq[0].empty()) {
                int i = 1;
                while(vq[i].empty()) ++i;
                last = *min_element(vq[i].begin(),vq[i].end());
                for(auto &p : vq[i]) vq[bit(p.first ^ last.first)].push_back(p);
                vq[i].clear();
            }
            --size_num;
            auto res = vq[0].back(); vq[0].pop_back();
            return res;
        }
    };
    template<class InnerKey> class Inner<InnerKey, unsigned int>{
        array<vector<TypeNode>,33> vq;
        unsigned int size_num;
        TypeNode last;
        inline int bit(unsigned int a) { return a ? 32 - __builtin_clz(a) : 0;}
    public:
        Inner(T mini) : size_num(0), last(make_pair(0, mini)) {}
        inline bool empty() { return size_num == 0; }
        inline size_t size(){ return size_num; }
        inline void push(TypeNode x){ ++size_num; vq[bit(x.first^last.first)].push_back(x);}
        inline void emplace(unsigned int key,T val){ ++size_num; vq[bit(key^last.first)].emplace_back(key,val);}
        inline TypeNode pop() {
            if(vq[0].empty()) {
                int i = 1;
                while(vq[i].empty()) ++i;
                last = *min_element(vq[i].begin(),vq[i].end());
                for(auto &p : vq[i]) vq[bit(p.first ^ last.first)].push_back(p);
                vq[i].clear();
            }
            --size_num;
            auto res = vq[0].back(); vq[0].pop_back();
            return res;
        }
    };
    Inner<Key,Key> inner;
public:
    RadixHeap(T mini) : inner(mini) {}
    inline bool empty() { return inner.empty();}
    inline size_t size(){ return inner.size();}
    inline void push(TypeNode x){ inner.push(x);}
    inline void emplace(unsigned long long key,T val){ inner.emplace(key,val);}
    inline TypeNode pop() { return inner.pop(); }
};

//Dijkstra
template<class T> class Dijkstra {
public:
	int N;
	T inf;
	vector<T> cost;
	vector<vector<pair<T, int>>> edge;

	Dijkstra(const int N, T inf) : N(N), inf(inf), cost(N), edge(N) {
	}

	void make_edge(int from, int to, T w) {
		edge[from].push_back({ w,to });
	}

	void solve(int start) {
		for (int i = 0; i < N; ++i) cost[i] = inf;

		RadixHeap<int,unsigned long long> pq(0);
		cost[start] = 0;
		pq.push({ 0,start });

		while (!pq.empty()) {
			auto p = pq.pop();
			T v = p.first;
			int from = p.second;
			if(cost[from]<v) continue;
			for (auto u : edge[from]) {
				T w = v + u.first;
				int to = u.second;
				if (w < cost[to]) {
					cost[to] = w;
					pq.push({ w,to });
				}
			}
		}
		return;
	}
};

int main() {
	cin.tie(0);ios::sync_with_stdio(false);
	int N, M; cin >> N >> M;
	Dijkstra<long long> dijk(2*N, 1LL<<60);
	for(int i = 0; i < M; ++i){
		int a, b;
		long long c;
		cin >> a >> b >> c;
		a--, b--;
		dijk.make_edge(a, b, c);
		dijk.make_edge(b, a, c);
		dijk.make_edge(a+N, b+N, c);
		dijk.make_edge(b+N, a+N, c);
		dijk.make_edge(a, b+N, 0);
		dijk.make_edge(b, a+N, 0);
	}
	dijk.solve(0);
	dijk.cost[N]=0;
	for (int i = 0; i < N; ++i) cout << dijk.cost[i]+dijk.cost[i+N] << endl;

	return 0;
}
0