結果
| 問題 |
No.2178 Payable Magic Items
|
| コンテスト | |
| ユーザー |
👑 |
| 提出日時 | 2023-05-31 11:11:46 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 128 ms / 4,000 ms |
| コード長 | 5,326 bytes |
| コンパイル時間 | 11,309 ms |
| コンパイル使用メモリ | 276,536 KB |
| 最終ジャッジ日時 | 2025-02-13 17:05:04 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 23 |
ソースコード
#ifdef DEBUG
#define _GLIBCXX_DEBUG
#else
#pragma GCC optimize ( "O3" )
#pragma GCC optimize( "unroll-loops" )
#pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
#endif
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
#define TYPE_OF( VAR ) remove_const<remove_reference<decltype( VAR )>::type >::type
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define CEXPR( LL , BOUND , VALUE ) constexpr const LL BOUND = VALUE
#define CIN( LL , A ) LL A; cin >> A
#define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) )
#define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- )
#define FOR_ITR( ARRAY , ITR , END ) for( auto ITR = ARRAY .begin() , END = ARRAY .end() ; ITR != END ; ITR ++ )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES )
#define QUIT return 0
#define COUT( ANSWER ) cout << ( ANSWER ) << "\n"
#define RETURN( ANSWER ) COUT( ANSWER ); QUIT
// Resetはm_foundも初期化
// Shiftはm_foundは非初期化
#define DECLARATION_OF_FIRST_SEARCH( BREADTH ) \
template <int V_max,list<int> E(const int&)> \
class BREADTH ## FirstSearch \
{ \
\
private: \
int m_V; \
int m_init; \
list<int> m_next; \
bool m_found[V_max]; \
\
public: \
inline BREADTH ## FirstSearch( const int& V ); \
inline BREADTH ## FirstSearch( const int& V , const int& init ); \
\
inline void Reset( const int& init ); \
inline void Shift( const int& init ); \
\
\
bool& Found( const int& i ); \
int Next(); \
\
}; \
#define DEFINITION_OF_FIRST_SEARCH( BREADTH , PUSH ) \
template <int V_max,list<int> E(const int&)> inline BREADTH ## FirstSearch<V_max,E>::BREADTH ## FirstSearch( const int& V ) : m_V( V ) , m_init() , m_next() , m_found() {} \
template <int V_max,list<int> E(const int&)> inline BREADTH ## FirstSearch<V_max,E>::BREADTH ## FirstSearch( const int& V , const int& init ) : m_V( V ) , m_init( init ) , m_next() , m_found() { m_next.push_back( m_init ); m_found[m_init] = true; } \
\
template <int V_max,list<int> E(const int&)> inline void BREADTH ## FirstSearch<V_max,E>::Reset( const int& init ) { m_init = init; m_next.clear(); m_next.push_back( m_init ); for( int i = 0 ; i < m_V ; i++ ){ m_found[i] = i == m_init; } } \
template <int V_max,list<int> E(const int&)> inline void BREADTH ## FirstSearch<V_max,E>::Shift( const int& init ) { m_init = init; m_next.clear(); if( ! m_found[m_init] ){ m_next.push_back( m_init ); m_found[m_init] = true;} } \
\
template <int V_max,list<int> E(const int&)> inline bool& BREADTH ## FirstSearch<V_max,E>::Found( const int& i ) { return m_found[i]; } \
\
template <int V_max,list<int> E(const int&)> \
int BREADTH ## FirstSearch<V_max,E>::Next() \
{ \
\
if( m_next.empty() ){ \
\
return -1; \
\
} \
\
const int i_curr = m_next.front(); \
m_next.pop_front(); \
list<int> edge = E( i_curr ); \
\
for( auto itr = edge.begin() , end = edge.end() ; itr != end ; itr++ ){ \
\
bool& found_i = m_found[*itr]; \
\
if( ! found_i ){ \
\
m_next.PUSH( *itr ); \
found_i = true; \
\
} \
\
} \
\
return i_curr; \
\
} \
DECLARATION_OF_FIRST_SEARCH( Breadth );
DEFINITION_OF_FIRST_SEARCH( Breadth , push_back );
inline CEXPR( int , bound_K , 8 );
class power_constexpr
{
public:
int m_val[bound_K+1];
constexpr power_constexpr() : m_val{ 1 } { FOREQ( i , 1 , bound_K ){ m_val[i] = m_val[i-1] * 5; } }
};
int K = 0;
constexpr power_constexpr power{};
list<int> E( const int& e )
{
list<int> answer{};
FOR( i , 0 , K ){
const int& power_i = power.m_val[i];
if( ( e / power_i ) % 5 > 0 ){
answer.push_back( e - power_i );
}
}
return answer;
}
int main()
{
UNTIE;
CEXPR( int , bound_N , 200000 );
CIN_ASSERT( N , 1 , bound_N );
CIN_ASSERT( K_prep , 1 , bound_K );
K = K_prep;
assert( N <= power.m_val[K] );
int S[bound_N];
CEXPR( int , bound_Si , 100000000 );
FOR( i , 0 , N ){
CIN_ASSERT( Si , 0 , bound_Si );
int Si_copy = 0;
REPEAT( K ){
( Si_copy *= 5 ) += Si % 10;
Si /= 10;
}
S[i] = Si_copy;
}
bool b[power.m_val[bound_K]] = {};
FOR( i , 0 , N ){
b[S[i]] = true;
}
int answer = 0;
BreadthFirstSearch<power.m_val[bound_K],E> bfs{ power.m_val[bound_K] };
FOR( i , 0 , N ){
int& Si = S[i];
bool& found_Si = bfs.Found( Si );
if( ! found_Si ){
bfs.Shift( Si );
int e = bfs.Next();
while( ( e = bfs.Next() ) != -1 ){
b[e] ? ++answer : answer;
}
found_Si = false;
}
}
RETURN( answer );
}