結果

問題 No.359 門松行列
ユーザー omuomu
提出日時 2016-04-18 02:42:22
言語 C++11
(gcc 11.4.0)
結果
RE  
実行時間 -
コード長 7,843 bytes
コンパイル時間 1,385 ms
コンパイル使用メモリ 120,516 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-10-04 12:58:53
合計ジャッジ時間 3,511 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 RE -
testcase_01 RE -
testcase_02 RE -
testcase_03 RE -
testcase_04 RE -
testcase_05 RE -
testcase_06 RE -
testcase_07 RE -
testcase_08 RE -
testcase_09 RE -
testcase_10 RE -
testcase_11 RE -
testcase_12 RE -
testcase_13 RE -
testcase_14 RE -
testcase_15 RE -
testcase_16 RE -
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In lambda function:
main.cpp:283:17: warning: control reaches end of non-void function [-Wreturn-type]
  283 |                 }();
      |                 ^

ソースコード

diff #

#include <cstdio>
#include <iostream>
#include <vector>
#include <map>
#include <unordered_map>
#include <set>
#include <unordered_set>
#include <string>
#include <cstring>
#include <sstream>
#include <algorithm>
#include <functional>
#include <queue>
#include <stack>
#include <cmath>
#include <iomanip>
#include <list>
#include <tuple>
#include <bitset>
#include <ciso646>
#include <cassert>

using namespace std;

typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
typedef pair<ll, ll> P;
typedef tuple<ll, ll, ll> T;
typedef vector<ll> vec;

inline bool check(ll x, ll y, ll xMax, ll yMax) { return x >= 0 && y >= 0 && xMax > x && yMax > y; }
inline int toint(string s) { int v; istringstream sin(s); sin >> v; return v; }
template<class T> inline string tostring(T x) { ostringstream sout; sout << x; return sout.str(); }
template<class T> inline T sqr(T x) { return x*x; }
template<class T> inline T mypow(T x, ll n) { T res = 1; while (n > 0) { if (n & 1)res = res * x;	x = x * x;	n >>= 1; }return res; }
inline ll gcd(ll a, ll b) { return b ? gcd(b, a%b) : a; }
inline ll lcm(ll a, ll b) { return a / gcd(a, b) * b; }

#define For(i,a,b)	for(ll (i) = (a);i < (b);(i)++)
#define rep(i,n)	For(i,0,n)
#define rFor(i,a,b)	for(ll (i) = (a-1);i >= (b);(i)--)
#define rrep(i,n)	rFor(i,n,0)
#define each(i,n)	for(auto &i : n)
#define clr(a)		memset((a), 0 ,sizeof(a))
#define mclr(a)		memset((a), -1 ,sizeof(a))
#define all(a)		(a).begin(),(a).end()
#define sz(a)		(sizeof(a))
#define tostr(a)	tostring(a)
#define dump(val) 	cerr << #val " = " << val << endl;
#define Fill(a,v)	fill((int*)a,(int*)(a+(sz(a)/sz(*(a)))),v)

const ll dx[8] = { 1, 0, -1, 0, 1, 1, -1, -1 }, dy[8] = { 0, -1, 0, 1, -1, 1, -1, 1 };

const ll mod = 1e9 + 7;
const ll INF = 1e17 + 9;

#define int ll
#define double ld

struct Point {
	int x, y;
	Point() { x = -1, y = -1; }
	Point(int x, int y)
		: x(x)
		, y(y)
	{}
	bool operator < (Point &other) {
		return x < other.x || (x == other.x && y < other.y);
	}
	bool operator == (Point &other) {
		return (x == other.x && y == other.y);
	}
};

typedef tuple<Point, Point, Point> P3;

bool isKadoMatuRetu(int t1, int t2, int t3) {
	if (t1 == t2 || t2 == t3 || t3 == t1)return false;
	return (t2 == min({ t1,t2,t3 }) || t2 == max({ t1,t2,t3 }));
}

vector<P3> judgeTarget;
vector<bool> kind(8, true);

void init() {
	for (int r = 0; r < 3; r++) {
		judgeTarget.push_back(make_tuple(Point(r, 0), Point(r, 1), Point(r, 2)));
	}
	for (int c = 0; c < 3; c++) {
		judgeTarget.push_back(make_tuple(Point(0, c), Point(1, c), Point(2, c)));
	}
	judgeTarget.push_back(make_tuple(Point(0, 2), Point(1, 1), Point(2, 0)));
	judgeTarget.push_back(make_tuple(Point(0, 0), Point(1, 1), Point(2, 2)));
}

bool isKadoMatuRetu3D(vector<vector<int>> t) {
	if (t.size() != 3 || t[0].size() != 3)return false;
	for (auto i : judgeTarget) {
		int x0 = get<0>(i).x, y0 = get<0>(i).y,
			x1 = get<1>(i).x, y1 = get<1>(i).y,
			x2 = get<2>(i).x, y2 = get<2>(i).y;
		if (!t[x0][y0] || !t[x1][y1] || !t[x2][y2])continue;
		if (isKadoMatuRetu(t[x0][y0], t[x1][y1], t[x2][y2]) == false) {
			return false;
		}
	}
	return true;
}

signed main() {
	cin.tie(0);
	ios_base::sync_with_stdio(false);
	init();

	int T;
	cin >> T;

	for (int _ = 0; _ < T; _++) {

		[]() {

			int L;
			cin >> L;
			vector<vector<int>> a(3, vector<int>(3));
			vector<Point> zero;
			rep(i, 3)rep(j, 3) {
				cin >> a[i][j];
				if (a[i][j] == 0) {
					zero.push_back(Point(i, j));
				}
			}
			int zx0 = zero[0].x, zy0 = zero[0].y,
				zx1 = zero[1].x, zy1 = zero[1].y;

			set<int> NG[3][3];
			bool ok = true;
			bool near = false;

			for (auto i : judgeTarget) {
				int x0 = get<0>(i).x, y0 = get<0>(i).y,
					x1 = get<1>(i).x, y1 = get<1>(i).y,
					x2 = get<2>(i).x, y2 = get<2>(i).y;
				int t0 = a[x0][y0], t1 = a[x1][y1], t2 = a[x2][y2];
				if (t0 && t0 == t1)ok = false;
				if (t1 && t1 == t2)ok = false;
				if (t2 && t2 == t0)ok = false;

				NG[x0][y0].insert(t1);
				NG[x0][y0].insert(t2);
				NG[x1][y1].insert(t0);
				NG[x1][y1].insert(t2);
				NG[x2][y2].insert(t1);
				NG[x2][y2].insert(t0);

				int cnt = (t0 == 0 ? 1 : 0) + (t1 == 0 ? 1 : 0) + (t2 == 0 ? 1 : 0);
				if (cnt == 2) {
					near = true;
				}
			}
			if (!ok || isKadoMatuRetu3D(a) == false) {
				cout << 0 << endl;
				return 0;
			}

			function<int(int)> dfs = [&](int m) {
				int count = 0;
				if (m == 8) {
					int maxTable[3][3], minTable[3][3];

					Fill(maxTable, L - 1);
					Fill(minTable, 1);

					rep(x, 3)rep(y, 3) {
						if (a[x][y] != 0) {
							maxTable[x][y] = a[x][y];
							minTable[x][y] = a[x][y];
						}
					}

					//a[zx0][zy0] < a[zx1][zy1]かどうか
					bool large_0_1 = false;

					//a[zx0][zy0] > a[zx1][zy1]かどうか
					bool small_0_1 = false;

					rep(__, 3)
					rep(i, judgeTarget.size()) {
						auto target = judgeTarget[i];
						int x0 = get<0>(target).x, y0 = get<0>(target).y,
							x1 = get<1>(target).x, y1 = get<1>(target).y,
							x2 = get<2>(target).x, y2 = get<2>(target).y;

						auto ma0 = &maxTable[x0][y0],
							 ma1 = &maxTable[x1][y1],
							 ma2 = &maxTable[x2][y2],
							 mi0 = &minTable[x0][y0],
							 mi1 = &minTable[x1][y1],
							 mi2 = &minTable[x2][y2];

						if (kind[i]) {	//t1が一番大きい
							(*ma0) = min((*ma1) - 1, (*ma0));
							(*ma2) = min((*ma1) - 1, (*ma2));
							(*mi1) = max((*mi0) + 1, (*mi1));
							(*mi1) = max((*mi2) + 1, (*mi1));
							if ( ma1 == &maxTable[zx0][zy0] &&
								(ma0 == &maxTable[zx1][zy1] || ma2 == &maxTable[zx1][zy1])) {
								small_0_1 = true;
							}
							if ( ma1 == &maxTable[zx1][zy1] &&
								(ma0 == &maxTable[zx0][zy0] || ma2 == &maxTable[zx0][zy0])) {
								large_0_1 = true;
							}
						}
						else {			//t1が一番小さい
							(*mi0) = max((*mi1) + 1, (*mi0));
							(*mi2) = max((*mi1) + 1, (*mi2));
							(*ma1) = min((*ma0) - 1, (*ma1));
							(*ma1) = min((*ma2) - 1, (*ma1));
							if ( mi1 == &maxTable[zx0][zy0] &&
								(mi0 == &maxTable[zx1][zy1] || mi2 == &maxTable[zx1][zy1])) {
								large_0_1 = true;
							}
							if ( mi1 == &maxTable[zx1][zy1] &&
								(mi0 == &maxTable[zx0][zy0] || mi2 == &maxTable[zx0][zy0])) {
								small_0_1 = true;
							}
						}
					}


					if (large_0_1) {
						minTable[zx1][zy1] = max(minTable[zx1][zy1], L - maxTable[zx0][zy0] + 1);
						maxTable[zx0][zy0] = min(minTable[zx0][zy0], L - minTable[zx1][zy1] - 1);
					}
					if (small_0_1) {
						minTable[zx0][zy0] = max(minTable[zx0][zy0], L - maxTable[zx1][zy1] + 1);
						maxTable[zx1][zy1] = min(minTable[zx1][zy1], L - minTable[zx0][zy0] - 1);
					}

					rep(__, 3) {
						maxTable[zx1][zy1] = min(maxTable[zx1][zy1], L - minTable[zx0][zy0]);
						minTable[zx1][zy1] = max(minTable[zx1][zy1], L - maxTable[zx0][zy0]);
						maxTable[zx0][zy0] = min(maxTable[zx0][zy0], L - minTable[zx1][zy1]);
						minTable[zx0][zy0] = max(minTable[zx0][zy0], L - maxTable[zx1][zy1]);
					}

					rep(x, 3)rep(y, 3) {
						if (minTable[x][y] > maxTable[x][y]) {
							return 0ll;
						}
					}

					int ma0 = maxTable[zx0][zy0], mi0 = minTable[zx0][zy0],
						ma1 = maxTable[zx1][zy1], mi1 = minTable[zx1][zy1];
					int minus = 0;
					for (auto ng : NG[zx0][zy0]) {
						if (mi0 <= ng && ng <= ma0) {
							minus++;
						}
					}
					for (auto ng : NG[zx1][zy1]) {
						if (mi1 <= ng && ng <= ma1) {
							minus++;
						}
					}					
					count = min((ma0 - mi0 + 1ll), (ma1 - mi1 + 1ll));
					if (near && L%2 == 0 && mi0 <= L/2 && L/2 <= ma0 && mi1 <= L/2 && L/2 <= ma1) {
						count--;
					}
					count -= minus;
					if (count < 0)count = 0ll;
					return count;
				}
				kind[m] = true;  count += dfs(m + 1);
				kind[m] = false; count += dfs(m + 1);
				return count;
			};

			int ans = dfs(0);
			cout << ans << endl;

		}();
	}

	return 0;
}
0