結果

問題 No.2320 Game World for PvP
ユーザー koba-e964
提出日時 2023-06-01 01:28:51
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 3 ms / 2,000 ms
コード長 7,443 bytes
コンパイル時間 15,154 ms
コンパイル使用メモリ 385,992 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-12-28 14:23:37
合計ジャッジ時間 16,591 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 30
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
($($r:tt)*) => {
let stdin = std::io::stdin();
let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
let mut next = move || -> String{
bytes.by_ref().map(|r|r.unwrap() as char)
.skip_while(|c|c.is_whitespace())
.take_while(|c|!c.is_whitespace())
.collect()
};
input_inner!{next, $($r)*}
};
}
macro_rules! input_inner {
($next:expr) => {};
($next:expr,) => {};
($next:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($next, $t);
input_inner!{$next $($r)*}
};
}
macro_rules! read_value {
($next:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
};
($next:expr, usize1) => (read_value!($next, usize) - 1);
($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));
}
// Dinic's algorithm for maximum flow problem.
// This implementation uses O(n) stack space.
// Verified by:
// - yukicoder No.177 (http://yukicoder.me/submissions/148371)
// - ABC239-G (https://atcoder.jp/contests/abc239/submissions/29497217)
#[derive(Clone)]
struct Edge<T> {
to: usize,
cap: T,
rev: usize, // rev is the position of the reverse edge in graph[to]
}
struct Cut {
is_t: Vec<bool>,
}
#[allow(unused)]
impl Cut {
pub fn is_cut(&self, s: usize, t: usize) -> bool {
!self.is_t[s] && self.is_t[t]
}
pub fn t(&self) -> Vec<usize> {
(0..self.is_t.len()).filter(|&v| self.is_t[v]).collect()
}
pub fn s(&self) -> Vec<usize> {
(0..self.is_t.len()).filter(|&v| !self.is_t[v]).collect()
}
}
struct Dinic<T> {
graph: Vec<Vec<Edge<T>>>,
iter: Vec<usize>,
zero: T,
}
impl<T> Dinic<T>
where T: Clone,
T: Copy,
T: Ord,
T: std::ops::Add<Output = T>,
T: std::ops::Sub<Output = T>,
T: std::ops::AddAssign,
T: std::ops::SubAssign,
{
fn bfs(&self, s: usize, t: usize, level: &mut [Option<usize>]) {
let n = level.len();
for i in 0..n {
level[i] = None;
}
let mut que = std::collections::VecDeque::new();
level[s] = Some(0);
que.push_back(s);
while let Some(v) = que.pop_front() {
for e in self.graph[v].iter() {
if e.cap > self.zero && level[e.to] == None {
level[e.to] = Some(level[v].unwrap() + 1);
if e.to == t { return; }
que.push_back(e.to);
}
}
}
}
// search an augment path with dfs.
// if f == None, f is treated as infinity.
fn dfs(&mut self, v: usize, s: usize, f: Option<T>, level: &mut [Option<usize>]) -> T {
if v == s {
return f.unwrap();
}
let mut res = self.zero;
while self.iter[v] < self.graph[v].len() {
let i = self.iter[v];
let e = self.graph[v][i].clone();
let cap = self.graph[e.to][e.rev].cap;
if cap > self.zero && level[e.to].is_some() && level[v] > level[e.to] {
let newf = std::cmp::min(f.unwrap_or(cap + res) - res, cap);
let d = self.dfs(e.to, s, Some(newf), level);
if d > self.zero {
self.graph[v][i].cap += d;
self.graph[e.to][e.rev].cap -= d;
res += d;
if Some(res) == f {
return res;
}
}
}
self.iter[v] += 1;
}
res
}
pub fn new(n: usize, zero: T) -> Self {
Dinic {
graph: vec![Vec::new(); n],
iter: vec![0; n],
zero: zero,
}
}
pub fn add_edge(&mut self, from: usize, to: usize, cap: T) {
if from == to { return; }
let added_from = Edge {
to: to, cap: cap,
rev: self.graph[to].len() };
let added_to = Edge {
to: from, cap: self.zero,
rev: self.graph[from].len() };
self.graph[from].push(added_from);
self.graph[to].push(added_to);
}
pub fn max_flow(&mut self, s: usize, t: usize) -> (T, Cut) {
let mut flow = self.zero;
let n = self.graph.len();
let mut level = vec![None; n];
loop {
self.bfs(s, t, &mut level);
if level[t] == None {
let is_t: Vec<bool> = (0..n).map(|v| level[v].is_none())
.collect();
return (flow, Cut { is_t: is_t });
}
self.iter.clear();
self.iter.resize(n, 0);
let f = self.dfs(t, s, None, &mut level);
flow += f;
}
}
}
// Submodular minimization (up to 2-variable constraints)
// Ref: https://theory-and-me.hatenablog.com/entry/2020/03/17/180157
// Verified by: https://atcoder.jp/contests/abc259/submissions/33771580
// Depends on: graph/Dinic.rs
struct SubmodMin(Dinic<i64>, i64);
impl SubmodMin {
fn new(n: usize) -> Self {
let din = Dinic::new(2 + n, 0);
SubmodMin(din, 0)
}
fn add1(&mut self, i: usize, cost: [i64; 2]) {
let d = cost[1] - cost[0];
if cost[0] < cost[1] {
self.0.add_edge(0, 2 + i, d);
self.1 += cost[0];
}
if cost[0] > cost[1] {
self.0.add_edge(2 + i, 1, -d);
self.1 += cost[1];
}
if cost[0] == cost[1] {
self.1 += cost[1];
}
}
fn add2(&mut self, i: usize, j: usize, c: [[i64; 2]; 2]) {
assert!(c[0][0] + c[1][1] <= c[0][1] + c[1][0]);
self.1 += c[0][0];
self.add1(i, [0, c[1][0] - c[0][0]]);
self.add1(j, [0, c[1][1] - c[1][0]]);
self.0.add_edge(2 + i, 2 + j, c[0][1] + c[1][0] - (c[0][0] + c[1][1]));
}
#[allow(unused)]
fn calc(&mut self) -> i64 {
let ans = self.0.max_flow(0, 1).0;
ans + self.1
}
#[allow(unused)]
fn calc_with_sol(&mut self) -> (i64, Vec<bool>) {
let (ans, cut) = self.0.max_flow(0, 1);
let mut sol = vec![false; self.0.graph.len() - 2];
for v in cut.t() {
if v >= 2 {
sol[v - 2] = true;
}
}
(ans + self.1, sol)
}
}
fn main() {
// In order to avoid potential stack overflow, spawn a new thread.
let stack_size = 104_857_600; // 100 MB
let thd = std::thread::Builder::new().stack_size(stack_size);
thd.spawn(|| solve()).unwrap().join().unwrap();
}
// https://yukicoder.me/problems/no/2320 (3.5)
// inf 3600 i64
// Tags: submodular-optimization
fn solve() {
input! {
n: usize, s: usize, t: usize,
e: [usize1; s],
r: [usize1; t],
c: [[i64; n]; n],
}
let mut sub = SubmodMin::new(n);
let mut csum = 0;
for i in 0..n {
for j in i + 1..n {
csum += c[i][j];
sub.add2(i, j, [[0, c[i][j]], [c[i][j], 0]]);
}
}
const INF: i64 = 1 << 50;
for &e in &e {
sub.add1(e, [0, INF]);
}
for &r in &r {
sub.add1(r, [INF, 0]);
}
let res = sub.calc();
println!("{}", csum - res);
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0