結果
| 問題 |
No.2336 Do you like typical problems?
|
| コンテスト | |
| ユーザー |
akakimidori
|
| 提出日時 | 2023-06-02 21:48:26 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 898 ms / 2,000 ms |
| コード長 | 12,541 bytes |
| コンパイル時間 | 18,978 ms |
| コンパイル使用メモリ | 378,616 KB |
| 実行使用メモリ | 24,384 KB |
| 最終ジャッジ日時 | 2024-12-28 17:17:08 |
| 合計ジャッジ時間 | 26,127 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 18 |
コンパイルメッセージ
warning: unused import: `std::io::Write` --> src/main.rs:2:5 | 2 | use std::io::Write; | ^^^^^^^^^^^^^^ | = note: `#[warn(unused_imports)]` on by default warning: type alias `Map` is never used --> src/main.rs:4:6 | 4 | type Map<K, V> = BTreeMap<K, V>; | ^^^ | = note: `#[warn(dead_code)]` on by default warning: type alias `Set` is never used --> src/main.rs:5:6 | 5 | type Set<T> = BTreeSet<T>; | ^^^ warning: type alias `Deque` is never used --> src/main.rs:6:6 | 6 | type Deque<T> = VecDeque<T>; | ^^^^^
ソースコード
use std::collections::*;
use std::io::Write;
type Map<K, V> = BTreeMap<K, V>;
type Set<T> = BTreeSet<T>;
type Deque<T> = VecDeque<T>;
fn main() {
input! {
n: usize,
p: [(usize1, usize); n],
}
let mut z = p.iter().flat_map(|p| [p.0, p.1]).collect::<Vec<_>>();
z.sort();
z.dedup();
let mut seg = LazySegmentTree::build(
z.windows(2).map(|z| (M::zero(), M::from(z[1] - z[0]))),
z.len() - 1,
R,
);
let mut cnt = M::zero();
let mut all = M::one();
for &(l, r) in p.iter() {
all *= M::from(r - l);
let s = z.binary_search(&l).unwrap();
let t = z.binary_search(&r).unwrap();
cnt += seg.find(s, t).0 * M::from(r - l).inv();
seg.update(s, t, M::from(r - l).inv());
}
let ans = (M::from(n * (n - 1) / 2) - cnt) * M::new(2).inv() * M::fact(n);
println!("{}", ans);
}
struct R;
impl TE for R {
type T = (M, M);
type E = M;
fn fold(&self, l: &Self::T, r: &Self::T) -> Self::T {
(l.0 + r.0, l.1 + r.1)
}
fn eval(&self, x: &Self::T, f: &Self::E) -> Self::T {
(x.0 + x.1 * *f, x.1)
}
fn merge(&self, g: &Self::E, h: &Self::E) -> Self::E {
*g + *h
}
fn e(&self) -> Self::T {
(M::zero(), M::zero())
}
fn id(&self) -> Self::E {
M::zero()
}
}
// ---------- begin input macro ----------
// reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
#[macro_export]
macro_rules! input {
(source = $s:expr, $($r:tt)*) => {
let mut iter = $s.split_whitespace();
input_inner!{iter, $($r)*}
};
($($r:tt)*) => {
let s = {
use std::io::Read;
let mut s = String::new();
std::io::stdin().read_to_string(&mut s).unwrap();
s
};
let mut iter = s.split_whitespace();
input_inner!{iter, $($r)*}
};
}
#[macro_export]
macro_rules! input_inner {
($iter:expr) => {};
($iter:expr, ) => {};
($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($iter, $t);
input_inner!{$iter $($r)*}
};
}
#[macro_export]
macro_rules! read_value {
($iter:expr, ( $($t:tt),* )) => {
( $(read_value!($iter, $t)),* )
};
($iter:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
};
($iter:expr, chars) => {
read_value!($iter, String).chars().collect::<Vec<char>>()
};
($iter:expr, bytes) => {
read_value!($iter, String).bytes().collect::<Vec<u8>>()
};
($iter:expr, usize1) => {
read_value!($iter, usize) - 1
};
($iter:expr, $t:ty) => {
$iter.next().unwrap().parse::<$t>().expect("Parse error")
};
}
// ---------- end input macro ----------
// ---------- begin modint ----------
use std::marker::*;
use std::ops::*;
pub trait Modulo {
fn modulo() -> u32;
}
pub struct ConstantModulo<const M: u32>;
impl<const M: u32> Modulo for ConstantModulo<{ M }> {
fn modulo() -> u32 {
M
}
}
pub struct ModInt<T>(u32, PhantomData<T>);
impl<T> Clone for ModInt<T> {
fn clone(&self) -> Self {
Self::new_unchecked(self.0)
}
}
impl<T> Copy for ModInt<T> {}
impl<T: Modulo> Add for ModInt<T> {
type Output = ModInt<T>;
fn add(self, rhs: Self) -> Self::Output {
let mut v = self.0 + rhs.0;
if v >= T::modulo() {
v -= T::modulo();
}
Self::new_unchecked(v)
}
}
impl<T: Modulo> AddAssign for ModInt<T> {
fn add_assign(&mut self, rhs: Self) {
*self = *self + rhs;
}
}
impl<T: Modulo> Sub for ModInt<T> {
type Output = ModInt<T>;
fn sub(self, rhs: Self) -> Self::Output {
let mut v = self.0 - rhs.0;
if self.0 < rhs.0 {
v += T::modulo();
}
Self::new_unchecked(v)
}
}
impl<T: Modulo> SubAssign for ModInt<T> {
fn sub_assign(&mut self, rhs: Self) {
*self = *self - rhs;
}
}
impl<T: Modulo> Mul for ModInt<T> {
type Output = ModInt<T>;
fn mul(self, rhs: Self) -> Self::Output {
let v = self.0 as u64 * rhs.0 as u64 % T::modulo() as u64;
Self::new_unchecked(v as u32)
}
}
impl<T: Modulo> MulAssign for ModInt<T> {
fn mul_assign(&mut self, rhs: Self) {
*self = *self * rhs;
}
}
impl<T: Modulo> Neg for ModInt<T> {
type Output = ModInt<T>;
fn neg(self) -> Self::Output {
if self.is_zero() {
Self::zero()
} else {
Self::new_unchecked(T::modulo() - self.0)
}
}
}
impl<T> std::fmt::Display for ModInt<T> {
fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
write!(f, "{}", self.0)
}
}
impl<T> std::fmt::Debug for ModInt<T> {
fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
write!(f, "{}", self.0)
}
}
impl<T> Default for ModInt<T> {
fn default() -> Self {
Self::zero()
}
}
impl<T: Modulo> std::str::FromStr for ModInt<T> {
type Err = std::num::ParseIntError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
let val = s.parse::<u32>()?;
Ok(ModInt::new(val))
}
}
impl<T: Modulo> From<usize> for ModInt<T> {
fn from(val: usize) -> ModInt<T> {
ModInt::new_unchecked((val % T::modulo() as usize) as u32)
}
}
impl<T: Modulo> From<u64> for ModInt<T> {
fn from(val: u64) -> ModInt<T> {
ModInt::new_unchecked((val % T::modulo() as u64) as u32)
}
}
impl<T: Modulo> From<i64> for ModInt<T> {
fn from(val: i64) -> ModInt<T> {
let mut v = ((val % T::modulo() as i64) + T::modulo() as i64) as u32;
if v >= T::modulo() {
v -= T::modulo();
}
ModInt::new_unchecked(v)
}
}
impl<T> ModInt<T> {
pub fn new_unchecked(n: u32) -> Self {
ModInt(n, PhantomData)
}
pub fn zero() -> Self {
ModInt::new_unchecked(0)
}
pub fn one() -> Self {
ModInt::new_unchecked(1)
}
pub fn is_zero(&self) -> bool {
self.0 == 0
}
}
impl<T: Modulo> ModInt<T> {
pub fn new(d: u32) -> Self {
ModInt::new_unchecked(d % T::modulo())
}
pub fn pow(&self, mut n: u64) -> Self {
let mut t = Self::one();
let mut s = *self;
while n > 0 {
if n & 1 == 1 {
t *= s;
}
s *= s;
n >>= 1;
}
t
}
pub fn inv(&self) -> Self {
assert!(!self.is_zero());
self.pow(T::modulo() as u64 - 2)
}
pub fn fact(n: usize) -> Self {
(1..=n).fold(Self::one(), |s, a| s * Self::from(a))
}
pub fn perm(n: usize, k: usize) -> Self {
if k > n {
return Self::zero();
}
((n - k + 1)..=n).fold(Self::one(), |s, a| s * Self::from(a))
}
pub fn binom(n: usize, k: usize) -> Self {
if k > n {
return Self::zero();
}
let k = k.min(n - k);
let mut nu = Self::one();
let mut de = Self::one();
for i in 0..k {
nu *= Self::from(n - i);
de *= Self::from(i + 1);
}
nu * de.inv()
}
}
// ---------- end modint ----------
// ---------- begin precalc ----------
pub struct Precalc<T> {
fact: Vec<ModInt<T>>,
ifact: Vec<ModInt<T>>,
inv: Vec<ModInt<T>>,
}
impl<T: Modulo> Precalc<T> {
pub fn new(n: usize) -> Precalc<T> {
let mut inv = vec![ModInt::one(); n + 1];
let mut fact = vec![ModInt::one(); n + 1];
let mut ifact = vec![ModInt::one(); n + 1];
for i in 2..=n {
fact[i] = fact[i - 1] * ModInt::new_unchecked(i as u32);
}
ifact[n] = fact[n].inv();
if n > 0 {
inv[n] = ifact[n] * fact[n - 1];
}
for i in (1..n).rev() {
ifact[i] = ifact[i + 1] * ModInt::new_unchecked((i + 1) as u32);
inv[i] = ifact[i] * fact[i - 1];
}
Precalc { fact, ifact, inv }
}
pub fn inv(&self, n: usize) -> ModInt<T> {
assert!(n > 0);
self.inv[n]
}
pub fn fact(&self, n: usize) -> ModInt<T> {
self.fact[n]
}
pub fn ifact(&self, n: usize) -> ModInt<T> {
self.ifact[n]
}
pub fn perm(&self, n: usize, k: usize) -> ModInt<T> {
if k > n {
return ModInt::zero();
}
self.fact[n] * self.ifact[n - k]
}
pub fn binom(&self, n: usize, k: usize) -> ModInt<T> {
if k > n {
return ModInt::zero();
}
self.fact[n] * self.ifact[k] * self.ifact[n - k]
}
}
// ---------- end precalc ----------
type M = ModInt<ConstantModulo<998_244_353>>;
// ---------- begin Lazy Segment Tree ----------
pub trait TE {
type T: Clone;
type E: Clone;
fn fold(&self, l: &Self::T, r: &Self::T) -> Self::T;
fn eval(&self, x: &Self::T, f: &Self::E) -> Self::T;
fn merge(&self, g: &Self::E, h: &Self::E) -> Self::E;
fn e(&self) -> Self::T;
fn id(&self) -> Self::E;
}
pub struct LazySegmentTree<R: TE> {
n: usize,
size: usize,
bit: u32,
op: R,
data: Vec<(R::T, R::E)>,
}
impl<R: TE> LazySegmentTree<R> {
pub fn new(n: usize, op: R) -> Self {
assert!(n > 0);
let size = n.next_power_of_two();
let bit = size.trailing_zeros();
let data = vec![(op.e(), op.id()); 2 * size];
Self {
n,
size,
bit,
op,
data,
}
}
pub fn build<I>(init: I, n: usize, op: R) -> Self
where
I: Iterator<Item = R::T>,
{
let mut seg = Self::new(n, op);
for (data, ini) in seg.data[seg.size..].iter_mut().zip(init) {
data.0 = ini;
}
for i in (1..seg.size).rev() {
seg.pull(i);
}
seg
}
pub fn update(&mut self, l: usize, r: usize, f: R::E) {
assert!(l <= r && r <= self.n);
if l == r {
return;
}
self.push_range(l, r);
let mut s = l + self.size;
let mut t = r + self.size;
while s < t {
if s & 1 == 1 {
self.apply(s, &f);
s += 1;
}
if t & 1 == 1 {
t -= 1;
self.apply(t, &f);
}
s >>= 1;
t >>= 1;
}
let l = l + self.size;
let r = r + self.size;
for k in 1..=self.bit {
if (l >> k) << k != l {
self.pull(l >> k);
}
if (r >> k) << k != r {
self.pull((r - 1) >> k);
}
}
}
pub fn find(&mut self, l: usize, r: usize) -> R::T {
assert!(l <= r && r <= self.n);
if l == r {
return self.op.e();
}
self.push_range(l, r);
let mut l = l + self.size;
let mut r = r + self.size;
let mut p = self.op.e();
let mut q = self.op.e();
while l < r {
if l & 1 == 1 {
p = self.op.fold(&p, &self.data[l].0);
l += 1;
}
if r & 1 == 1 {
r -= 1;
q = self.op.fold(&self.data[r].0, &q);
}
l >>= 1;
r >>= 1;
}
self.op.fold(&p, &q)
}
pub fn set_at(&mut self, x: usize, v: R::T) {
assert!(x < self.n);
let x = x + self.size;
for k in (1..=self.bit).rev() {
self.push(x >> k);
}
self.data[x].0 = v;
for k in 1..=self.bit {
self.pull(x >> k);
}
}
fn push_range(&mut self, l: usize, r: usize) {
let l = l + self.size;
let r = r + self.size;
for k in (1..=self.bit).rev() {
if (l >> k) << k != l {
self.push(l >> k);
}
if (r >> k) << k != r {
self.push((r - 1) >> k);
}
}
}
fn apply(&mut self, x: usize, f: &R::E) {
self.data[x].0 = self.op.eval(&self.data[x].0, f);
self.data[x].1 = self.op.merge(&self.data[x].1, f);
}
fn push(&mut self, x: usize) {
let f = std::mem::replace(&mut self.data[x].1, self.op.id());
self.apply(2 * x, &f);
self.apply(2 * x + 1, &f);
}
fn pull(&mut self, x: usize) {
self.data[x].0 = self.op.fold(&self.data[2 * x].0, &self.data[2 * x + 1].0);
}
}
// ---------- end Lazy Segment Tree ----------
akakimidori