結果
| 問題 |
No.2337 Equidistant
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-06-02 21:57:19 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 4,346 bytes |
| コンパイル時間 | 357 ms |
| コンパイル使用メモリ | 82,432 KB |
| 実行使用メモリ | 383,748 KB |
| 最終ジャッジ日時 | 2024-12-28 17:40:01 |
| 合計ジャッジ時間 | 78,629 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 19 TLE * 9 |
ソースコード
import sys, time, random
from collections import deque, Counter, defaultdict
input = lambda: sys.stdin.readline().rstrip()
ii = lambda: int(input())
mi = lambda: map(int, input().split())
li = lambda: list(mi())
inf = 2 ** 63 - 1
mod = 998244353
class segtree():
def __init__(self,V,OP,E):
self.n=len(V)
self.op=OP
self.e=E
self.log=(self.n-1).bit_length()
self.size=1<<self.log
self.d=[E for i in range(2*self.size)]
for i in range(self.n):
self.d[self.size+i]=V[i]
for i in range(self.size-1,0,-1):
self.update(i)
def prod(self,l,r):
assert 0<=l and l<=r and r<=self.n
sml=self.e
smr=self.e
l+=self.size
r+=self.size
while(l<r):
if (l&1):
sml=self.op(sml,self.d[l])
l+=1
if (r&1):
smr=self.op(self.d[r-1],smr)
r-=1
l>>=1
r>>=1
return self.op(sml,smr)
def update(self,k):
self.d[k]=self.op(self.d[2*k],self.d[2*k+1])
def EulerTour(s, graph):
n = len(graph)
visit = [False] * n
visit[s] = True
q = [s]
ret = []
while q:
now = q.pop()
if now >= 0:
ret.append(now)
for to in graph[now][::-1]:
if not visit[to]:
visit[to] = True
q.append(~now)
q.append(to)
else:
ret.append(~now)
return ret
def CalcDepth(s, graph):
INF = 2 ** 63 - 1
from collections import deque
n = len(graph)
depth = [INF] * n
depth[s] = 0
q = deque()
q.append(s)
while q:
now = q.popleft()
for to in graph[now]:
if depth[to] == INF:
depth[to] = depth[now] + 1
q.append(to)
return depth
class LCA():
def __init__(self, graph):
self.INF = 2 ** 63 - 1
self.graph = graph
self.N = len(self.graph)
self.ET = EulerTour(0, self.graph)
self.depth = CalcDepth(0, graph)
self.disc = [-1] * (self.N)
self.fin = [-1] * (self.N)
for i, v in enumerate(self.ET):
if self.disc[v] == -1:
self.disc[v] = i
self.fin[v] = i
self.S = segtree([(self.ET[i], self.depth[self.ET[i]]) for i in range(len(self.ET))], lambda x, y: x if x[1] <= y[1] else y, (-1, self.INF))
def lca(self, u, v):
st = min(self.disc[u], self.disc[v])
en = max(self.fin[u], self.fin[v]) + 1
ver, _ = self.S.prod(st, en)
return ver
def dist(self, u, v):
a = self.lca(u, v)
return self.depth[u] + self.depth[v] - 2 * self.depth[a]
n, q = mi()
graph = [[] for _ in range(n)]
for _ in range(n - 1):
u, v = mi()
u -= 1; v -= 1
graph[u].append(v)
graph[v].append(u)
d = CalcDepth(0, graph)
p = list(range(n))
p.sort(key = lambda x: d[x], reverse=True)
subt = [0] * n
for v in p:
for to in graph[v]:
if d[to] > d[v]:
subt[v] += subt[to]
subt[v] += 1
L = LCA(graph)
p = [0] * n
for i in range(n):
for to in graph[i]:
if L.lca(i, to) == to:
p[i] = to
db = [[0] * n for _ in range(19)]
for i in range(n):
db[0][i] = p[i]
for j in range(18):
for i in range(n):
db[j + 1][i] = db[j][db[j][i]]
def jump(s, t, i):
if L.dist(s, t) < i:
return (-1)
else:
p = L.lca(s, t)
if L.dist(s, p) >= i:
now = s
for bit in range(18):
if i % 2:
now = db[bit][now]
i //= 2
return (now)
else:
i = L.dist(s, t) - i
now = t
for bit in range(18):
if i % 2:
now = db[bit][now]
i //= 2
return (now)
def size_of_subtree(s, t):
if d[s] < d[t]:
return subt[t]
else:
return n - subt[s]
for _ in range(q):
s, t = mi()
s -= 1; t -= 1
l = L.dist(s, t)
if l % 2 == 1:
print(0)
else:
u = jump(s, t, l // 2)
s1 = jump(u, s, 1)
t1 = jump(u, t, 1)
ans = n - size_of_subtree(u, s1) - size_of_subtree(u, t1)
print(ans)