結果

問題 No.2339 Factorial Paths
ユーザー heno239heno239
提出日時 2023-06-02 22:20:41
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 21 ms / 2,000 ms
コード長 7,098 bytes
コンパイル時間 2,752 ms
コンパイル使用メモリ 158,560 KB
実行使用メモリ 15,872 KB
最終ジャッジ日時 2024-12-28 19:10:45
合計ジャッジ時間 9,583 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 14 ms
15,744 KB
testcase_01 AC 15 ms
15,872 KB
testcase_02 AC 14 ms
15,744 KB
testcase_03 AC 13 ms
15,872 KB
testcase_04 AC 15 ms
15,744 KB
testcase_05 AC 13 ms
15,872 KB
testcase_06 AC 16 ms
15,744 KB
testcase_07 AC 16 ms
15,744 KB
testcase_08 AC 14 ms
15,744 KB
testcase_09 AC 14 ms
15,744 KB
testcase_10 AC 14 ms
15,872 KB
testcase_11 AC 14 ms
15,744 KB
testcase_12 AC 14 ms
15,872 KB
testcase_13 AC 15 ms
15,744 KB
testcase_14 AC 15 ms
15,872 KB
testcase_15 AC 17 ms
15,872 KB
testcase_16 AC 21 ms
15,744 KB
testcase_17 AC 19 ms
15,744 KB
testcase_18 AC 21 ms
15,744 KB
testcase_19 AC 16 ms
15,872 KB
testcase_20 AC 18 ms
15,744 KB
testcase_21 AC 16 ms
15,744 KB
testcase_22 AC 21 ms
15,616 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#include<iostream>
#include<string>
#include<cstdio>
#include<vector>
#include<cmath>
#include<algorithm>
#include<functional>
#include<iomanip>
#include<queue>
#include<ciso646>
#include<random>
#include<map>
#include<set>
#include<bitset>
#include<stack>
#include<unordered_map>
#include<unordered_set>
#include<utility>
#include<cassert>
#include<complex>
#include<numeric>
#include<array>
#include<chrono>
using namespace std;

//#define int long long
typedef long long ll;

typedef unsigned long long ul;
typedef unsigned int ui;
//ll mod = 1;
constexpr ll mod = 998244353;
//constexpr ll mod = 1000000007;
const int mod17 = 1000000007;
const ll INF = mod * mod;
typedef pair<int, int>P;

#define rep(i,n) for(int i=0;i<n;i++)
#define per(i,n) for(int i=n-1;i>=0;i--)
#define Rep(i,sta,n) for(int i=sta;i<n;i++)
#define rep1(i,n) for(int i=1;i<=n;i++)
#define per1(i,n) for(int i=n;i>=1;i--)
#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)
#define all(v) (v).begin(),(v).end()
typedef pair<ll, ll> LP;

using ld = long double;
typedef pair<ld, ld> LDP;
const ld eps = 1e-10;
const ld pi = acosl(-1.0);

template<typename T>
void chmin(T& a, T b) {
    a = min(a, b);
}
template<typename T>
void chmax(T& a, T b) {
    a = max(a, b);
}
template<typename T>
vector<T> vmerge(vector<T>& a, vector<T>& b) {
    vector<T> res;
    int ida = 0, idb = 0;
    while (ida < a.size() || idb < b.size()) {
        if (idb == b.size()) {
            res.push_back(a[ida]); ida++;
        }
        else if (ida == a.size()) {
            res.push_back(b[idb]); idb++;
        }
        else {
            if (a[ida] < b[idb]) {
                res.push_back(a[ida]); ida++;
            }
            else {
                res.push_back(b[idb]); idb++;
            }
        }
    }
    return res;
}
template<typename T>
void cinarray(vector<T>& v) {
    rep(i, v.size())cin >> v[i];
}
template<typename T>
void coutarray(vector<T>& v) {
    rep(i, v.size()) {
        if (i > 0)cout << " "; cout << v[i];
    }
    cout << "\n";
}
ll mod_pow(ll x, ll n, ll m = mod) {
    if (n < 0) {
        ll res = mod_pow(x, -n, m);
        return mod_pow(res, m - 2, m);
    }
    if (abs(x) >= m)x %= m;
    if (x < 0)x += m;
    //if (x == 0)return 0;
    ll res = 1;
    while (n) {
        if (n & 1)res = res * x % m;
        x = x * x % m; n >>= 1;
    }
    return res;
}
//mod should be <2^31
struct modint {
    int n;
    modint() :n(0) { ; }
    modint(ll m) {
        if (m < 0 || mod <= m) {
            m %= mod; if (m < 0)m += mod;
        }
        n = m;
    }
    operator int() { return n; }
};
bool operator==(modint a, modint b) { return a.n == b.n; }
bool operator<(modint a, modint b) { return a.n < b.n; }
modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= (int)mod; return a; }
modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += (int)mod; return a; }
modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }
modint operator+(modint a, modint b) { return a += b; }
modint operator-(modint a, modint b) { return a -= b; }
modint operator*(modint a, modint b) { return a *= b; }
modint operator^(modint a, ll n) {
    if (n == 0)return modint(1);
    modint res = (a * a) ^ (n / 2);
    if (n % 2)res = res * a;
    return res;
}

ll inv(ll a, ll p) {
    return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);
}
modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }
modint operator/=(modint& a, modint b) { a = a / b; return a; }
const int max_n = 1 << 20;
modint fact[max_n], factinv[max_n];
void init_f() {
    fact[0] = modint(1);
    for (int i = 0; i < max_n - 1; i++) {
        fact[i + 1] = fact[i] * modint(i + 1);
    }
    factinv[max_n - 1] = modint(1) / fact[max_n - 1];
    for (int i = max_n - 2; i >= 0; i--) {
        factinv[i] = factinv[i + 1] * modint(i + 1);
    }
}
modint comb(int a, int b) {
    if (a < 0 || b < 0 || a < b)return 0;
    return fact[a] * factinv[b] * factinv[a - b];
}
modint combP(int a, int b) {
    if (a < 0 || b < 0 || a < b)return 0;
    return fact[a] * factinv[a - b];
}

ll gcd(ll a, ll b) {
    a = abs(a); b = abs(b);
    if (a < b)swap(a, b);
    while (b) {
        ll r = a % b; a = b; b = r;
    }
    return a;
}
template<typename T>
void addv(vector<T>& v, int loc, T val) {
    if (loc >= v.size())v.resize(loc + 1, 0);
    v[loc] += val;
}
/*const int mn = 2000005;
bool isp[mn];
vector<int> ps;
void init() {
    fill(isp + 2, isp + mn, true);
    for (int i = 2; i < mn; i++) {
        if (!isp[i])continue;
        ps.push_back(i);
        for (int j = 2 * i; j < mn; j += i) {
            isp[j] = false;
        }
    }
}*/

//[,val)
template<typename T>
auto prev_itr(set<T>& st, T val) {
    auto res = st.lower_bound(val);
    if (res == st.begin())return st.end();
    res--; return res;
}

//[val,)
template<typename T>
auto next_itr(set<T>& st, T val) {
    auto res = st.lower_bound(val);
    return res;
}
using mP = pair<modint, modint>;
mP operator+(mP a, mP b) {
    return { a.first + b.first,a.second + b.second };
}
mP operator+=(mP& a, mP b) {
    a = a + b; return a;
}
mP operator-(mP a, mP b) {
    return { a.first - b.first,a.second - b.second };
}
mP operator-=(mP& a, mP b) {
    a = a - b; return a;
}
LP operator+(LP a, LP b) {
    return { a.first + b.first,a.second + b.second };
}
LP operator+=(LP& a, LP b) {
    a = a + b; return a;
}
LP operator-(LP a, LP b) {
    return { a.first - b.first,a.second - b.second };
}
LP operator-=(LP& a, LP b) {
    a = a - b; return a;
}

mt19937 mt(time(0));

const string drul = "DRUL";
string senw = "SENW";
//DRUL,or SENW
//int dx[4] = { 1,0,-1,0 };
//int dy[4] = { 0,1,0,-1 };

//-----------------------------------------

P dp[401];
void expr() {
    dp[1] = { 0,0 };
    for (int n = 2; n <= 400; n++) {
        int c1 = n / 2;
        int c2 = n - c1;
        dp[n] = { c1 + dp[c1].first + dp[c2].first,c2 + dp[c1].second + dp[c2].second };
    }
    int ma = 0;
    rep1(n, 400) {
        chmax(ma, dp[n].first);
        chmax(ma, dp[n].second);
    }
    cout << ma << "\n";
}
void solve() {
    int n; cin >> n;
    vector<string> ans(2000);
    rep(i, 2000) {
        ans[i].resize(2000, '#');
    }
    int ci = 0, cj = 0;
    ans[ci][cj] = '.';
    queue<int> q;
    q.push(n);
    while (!q.empty()) {
        int id = q.front(); q.pop();
        if (id == 1)continue;
        int c1 = id / 2;
        int c2 = id - c1;
        rep(adi, c1 + 1)rep(adj, c2 + 1) {
            ans[ci + adi][cj + adj] = '.';
        }
        ci += c1;
        cj += c2;
        q.push(c1);
        q.push(c2);
    }
    int h = ci + 1;
    int w = cj + 1;
    ans.resize(h);
    rep(i, h)ans[i].resize(w);
    cout << h << " " << w << "\n";
    rep(i, h)cout << ans[i] << "\n";
}





signed main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    //cout << fixed << setprecision(15);
    //init_f();
    //init();
    //while(true)
    //expr();
    //int t; cin >> t; rep(i, t)
    solve();
    return 0;
}
0